ﻻ يوجد ملخص باللغة العربية
We report measurements of the effects of a random vector potential generated by applying an in-plane magnetic field to a graphene flake. Magnetic flux through the ripples cause orbital effects: phase-coherent weak localization is suppressed, while quasi-random Lorentz forces lead to anisotropic magnetoresistance. Distinct signatures of these two effects enable an independent estimation of the ripple amplitude and correlation length.
An analysis of electron transport in graphene is presented in the presence of various arrangement of delta-function like magnetic barriers. The motion through one such barrier gives an unusual non specular refraction leading to asymmetric transmissio
A weak perpendicular magnetic field, $B$, breaks the chiral symmetry of each valley in the electron spectrum of graphene, preserving the overall chiral symmetry in the Brillouin zone. We explore the consequences of this symmetry breaking for the inte
We study the effects that ripples induce on the electrical and magnetic properties of graphene. The variation of the interatomic distance created by the ripples translates in a modulation of the hopping parameter between carbon atoms. A tight binding
The exceptionally high mobility of carriers in graphene is one of its defining characteristics, especially in view of potential applications. Therefore it is of both practical and fundamental importance to understand the mechanisms responsible for li
We investigate the electronic transport properties of unbiased and biased bilayer graphene nanoribbon in n-p and n-n junctions subject to a perpendicular magnetic field. Using the non-equilibrium Greens function method and the Landauer-B{u}ttiker for