ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the Quark-Gluon Phase Transition with Correlations and Fluctuations in Heavy Ion Collisions from the STAR Experiment

143   0   0.0 ( 0 )
 نشر من قبل Terence Tarnowsky
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of particle correlations and fluctuations has been suggested as a method to search for the existence of a phase transition in relativistic heavy ion collisions. If quark-gluon matter is formed in the collision of relativistic heavy ions, measuring these correlations could lead to a determination of the presence of partonic degrees of freedom within the collision. Additionally, non-statistical fluctuations in global quantities such as baryon number, strangeness, or charge may be observed near a QCD critical point. Results for short and long-range multiplicity correlations (forward-backward) are presented for several systems (Au+Au and Cu+Cu) and energies (e.g. $sqrt{s_{NN}}$ = 200, 62.4, and 22.4 GeV). For the highest energy central A+A collisions, the correlation strength maintains a constant value across the measurement region. In peripheral collisions, at lower energies, and in pp data, the maximum appears at midrapidity. Comparison to models with short-range (HIJING) and both short and long-range interactions (Parton String Model) do not fully reproduce central Au+Au data. Preliminary results for K/$pi$ fluctuations are also shown as a function of centrality in Cu+Cu collisions at $sqrt{s_{NN}}$ = 22.4 GeV.



قيم البحث

اقرأ أيضاً

250 - S.V. Akkelin 2008
Averaged over ensemble of initial conditions kinetic transport equations of weakly coupled systems of quarks and gluons are derived. These equations account for the correlators of fluctuations of particles and classical gluon fields. The isotropizati on of particle momenta by field fluctuations at the early prethermal stage of matter evolution in ultrarelativistic heavy ion collisions is discussed. Our results can be useful for understanding under what conditions isotropization of the quark-gluon plasma in ultrarelativistic heavy ion collisions can be reached within phenomenologically observed time scales.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
157 - Justin R. Stevens 2014
One of the primary goals of the spin program at the Relativistic Heavy Ion Collider (RHIC) is to determine the polarization of the sea quarks and gluons in the proton. The polarization of the sea quarks is probed through the production of $W^{-(+)}$ bosons via the annihilation of $bar{u}+d,(bar{d}+u)$, at leading order. In this proceedings we report measurements of the single-spin asymmetry, $A_{L}$, for $W$ boson production at $sqrt{s} = 510$ GeV, and the new constraints these results place on the antiquark helicity distributions. Recent results on the longitudinal double-spin asymmetry, $A_{LL}$, for inclusive and di-jet production at $sqrt{s} = 200$ GeV are also presented. The inclusive jet results provide the first experimental indication of non-zero gluon polarization in the $x$ range probed at RHIC.
We present a subset of experimental results on charge fluctuation from the heavy-ion collisions to search for phase transition and location of critical point in the QCD phase diagram. Measurements from the heavy-ion experiments at the SPS and RHIC en ergies observe that total charge fluctuations increase from central to peripheral collisions. The net-charge fluctuations in terms of dynamical fluctuation measure $ u_{(+-,dyn)}$ are studied as a function of collision energy (sqsn) and centrality of the collisions. The product of $ u_{(+-,dyn)}$ and $langle N_{ch} rangle$ shows a monotonic decrease with collision energies, which indicates that at LHC energy the fluctuations have their origin in the QGP phase. The fluctuations in terms of higher moments of net-proton, net-electric charge and net-kaon have been measured for various sqsn. Deviations are observed in both $Ssigma$ and $kappasigma^2$ for net-proton multiplicity distributions from the Skellam and hadron resonance gas model for sqsn $<$ 39 GeV. Higher moment results of the net-electric charge and net-kaon do not observe any significant non-monotonic behavior as a function of collision energy. We also discuss the extraction of the freeze-out parameters using particle ratios and experimentally measured higher moments of net-charge fluctuations. The extracted freeze-out parameters from experimentally measured moments and lattice calculations, are found to be in agreement with the results obtained from the fit of particle ratios to the thermal model calculations.
We study the phenomenon of jet quenching utilizing quark and gluon jet substructures as independent probes of heavy ion collisions. We exploit jet and subjet features to highlight differences between quark and gluon jets in vacuum and in a medium wit h the jet-quenching model implemented in JEWEL. We begin with a physics-motivated, multivariate analysis of jet substructure observables including the jet mass, the radial moments, the $p_T^D$ and the pixel multiplicity. In comparison, we employ state-of-the-art image-recognition techniques by training a deep convolutional neutral network on jet images. To systematically extract jet substructure information, we introduce the telescoping deconstruction framework exploiting subjet kinematics at multiple angular scales. We draw connections to the soft-drop subjet distribution and illuminate medium-induced jet modifications using Lund diagrams. We find that the quark gluon discrimination performance worsens in heavy ion jets due to significant soft event activity affecting the soft jet substructure. Our work suggests a systematically improvable framework for studying modifications to quark and gluon jet substructures and facilitating direct comparisons between theoretical calculations, simulations and measurements in heavy ion collisions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا