ﻻ يوجد ملخص باللغة العربية
We present an investigation of the velocity fields in early to late M-type star hydrodynamic models, and we simulate their influence on FeH molecular line shapes. The M star model parameters range between log g of 3.0 - 5.0 and Teff of 2500 K and 4000 K. Our aim is to characterize the Teff- and log g -dependence of the velocity fields and express them in terms of micro- and macro-turbulent velocities in the one dimensional sense. We present also a direct comparison between 3D hydrodynamical velocity fields and 1D turbulent velocities. The velocity fields strongly affect the line shapes of FeH, and it is our goal to give a rough estimate for the log g and Teff parameter range in which 3D spectral synthesis is necessary and where 1D synthesis suffices. In order to calculate M-star structure models we employ the 3D radiative-hydrodynamics (RHD) code CO5BOLD. The spectral synthesis on these models is performed with the line synthesis code LINFOR3D. We describe the 3D velocity fields in terms of a Gaussian standard deviation and project them onto the line of sight to include geometrical and limb-darkening effects. The micro- and macro-turbulent velocities are determined with the Curve of Growth method and convolution with a Gaussian velocity profile, respectively. To characterize the log g and Teff dependence of FeH lines, the equivalent width, line width, and line depth are regarded. The velocity fields in M-stars strongly depend on log g and Teff. They become stronger with decreasing log g and increasing Teff.
Strong surface magnetic fields are ubiquitously found in M-dwarfs with mean intensities on the order of few thousand Gauss-three orders of magnitude higher than the mean surface magnetic field of the Sun. These fields and their interaction with photo
Molecular FeH provides a large number of sharp and isolated absorption lines that can be used to measure radial velocity, rotation, or magnetic field strength with high accuracy. Our aim is to provide an FeH atlas for M-type stars in the spectral reg
The reconstruction of the solar spectral irradiance (SSI) on various time scales is essential for the understanding of the Earths climate response to the SSI variability. The driver of the SSI variability is understood to be the intensity contrast of
This paper forms the second part of our study on how the neglect of NLTE conditions in the formation of Fe I 6301.5 A and the 6302.5 A lines influences the atmosphere obtained by inverting their profiles in LTE. The main cause of NLTE effects is the
This paper presents the results of the analysis of 3D simulations of solar magneto-convection that include the joint action of the ambipolar diffusion and the Hall effect. Three simulation-runs are compared: one including both ambipolar diffusion and