ﻻ يوجد ملخص باللغة العربية
We present initial results from a new 440-ks Chandra HETG GTO observation of the canonical Seyfert 2 galaxy NGC 1068. The proximity of NGC 1068, together with Chandras superb spatial and spectral resolution, allow an unprecedented view of its nucleus and circumnuclear NLR. We perform the first spatially resolved high-resolution X-ray spectroscopy of the `ionization cone in any AGN, and use the sensitive line diagnostics offered by the HETG to measure the ionization state, density, and temperature at discrete points along the ionized NLR. We argue that the NLR takes the form of outflowing photoionized gas, rather than gas that has been collisionally ionized by the small-scale radio jet in NGC 1068. We investigate evidence for any velocity gradients in the outflow, and describe our next steps in modeling the spatially resolved spectra as a function of distance from the nucleus.
We present initial results from a new 440-ks Chandra HETG GTO observation of the canonical Seyfert 2 galaxy NGC 1068. The proximity of NGC 1068, together with Chandras superb spatial and spectral resolution, allow an unprecedented view of its nucleus
We present models for the X-ray spectrum of the Seyfert 2 galaxy NGC 1068. These are fitted to data obtained using the High Energy Transmission Grating (HETG) on the Chandra X-ray observatory. The data show line and radiative recombination continuum
We present spatially resolved far-UV spectra (912-1840 A) of NGC 1068 obtained using the Hopkins Ultraviolet Telescope (HUT) during the March 1995 Astro-2 mission. Three spectra of this prototypical Seyfert 2 galaxy were obtained through a 12 arcsec
We analyse the 2-dimensional distribution and kinematics of the stars as well as molecular and ionised gas in the central few hundred parsecs of 5 active and 5 matched inactive galaxies. The equivalent widths of the Br-gamma line indicate there is no
We perform detailed spectroscopy of the X-ray brightest supernova remnant (SNR) in the Large Magellanic Cloud (LMC), N132D, using Chandra archival observations. By analyzing the spectra of the entire well-defined rim, we determine the mean abundances