ﻻ يوجد ملخص باللغة العربية
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.
[Abridged] The Lupus I cloud is found between the Upper-Scorpius and the Upper-Centaurus-Lupus sub-groups, where the expanding USco HI shell appears to interact with a bubble currently driven by the winds of the remaining B-stars of UCL. We investiga
Turbulence and magnetic fields are expected to be important for regulating molecular cloud formation and evolution. However, their effects on subparsec to 100 parsec scales, leading to the formation of starless cores, is not well understood. We inves
We have studied the filaments extracted from the column density maps of the nearby Lupus 1, 3, and 4 molecular clouds, derived from photometric maps observed with the Herschel satellite. Filaments in the Lupus clouds have quite low column densities,
We present the discovery of expanding spherical shells around low to intermediate-mass young stars in the Orion A giant molecular cloud using observations of $^{12}$CO (1-0) and $^{13}$CO (1-0) from the Nobeyama Radio Observatory 45-meter telescope.
We have mapped the Orion-A Giant Molecular Cloud in the CO (J=4-3) line with the Tsukuba 30-cm submillimeter telescope.The map covered a 7.125 deg^2 area with a 9 resolution, including main components of the cloud such as Orion Nebula, OMC-2/3, and L