ترغب بنشر مسار تعليمي؟ اضغط هنا

Concurrence of assistance and Mermin inequality on three-qubit pure states

146   0   0.0 ( 0 )
 نشر من قبل Taewan Kim
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a relation between the concurrence of assistance and the Mermin inequality on three-qubit pure states. We find that if a given three-qubit pure state has the minimal concurrence of assistance greater than 1/2 then the state violates some Mermin inequality.



قيم البحث

اقرأ أيضاً

135 - Gokhan Torun , Ali Yildiz 2019
The states of three-qubit systems split into two inequivalent types of genuine tripartite entanglement, namely the Greenberger-Horne-Zeilinger (GHZ) type and the $W$ type. A state belonging to one of these classes can be stochastically transformed on ly into a state within the same class by local operations and classical communications. We provide local quantum operations, consisting of the most general two-outcome measurement operators, for the deterministic transformations of three-qubit pure states in which the initial and the target states are in the same class. We explore these transformations, originally having standard GHZ and standard $W$ states, under the local measurement operations carried out by a single party and $p$ ($p=2,3$) parties (successively). We find a notable result that the standard GHZ state cannot be deterministically transformed to a GHZ-type state in which all its bipartite entanglements are nonzero, i.e., a transformation can be achieved with unit probability when the target state has at least one vanishing bipartite concurrence.
Average entanglement of random pure states of an N x N composite system is analyzed. We compute the average value of the determinant D of the reduced state, which forms an entanglement monotone. Calculating higher moments of the determinant we charac terize the probability distribution P(D). Similar results are obtained for the rescaled N-th root of the determinant, called G-concurrence. We show that in the limit $Ntoinfty$ this quantity becomes concentrated at a single point G=1/e. The position of the concentration point changes if one consider an arbitrary N x K bipartite system, in the joint limit $N,Ktoinfty$, K/N fixed.
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between no nlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.
Employing the Pauli matrices, we have constructed a set of operators, which can be used to distinguish six inequivalent classes of entanglement under SLOCC (stochastic local operation and classical communication) for three-qubit pure states. These op erators have very simple structure and can be obtained from the Mermins operator with suitable choice of directions. Moreover these operators may be implemented in an experiment to distinguish the types of entanglement present in a state. We show that the measurement of only one operator is sufficient to distinguish GHZ class from rest of the classes. It is also shown that it is possible to detect and classify other classes by performing a small number of measurements. We also show how to construct such observables in any basis. We also consider a few mixed states to investigate the usefulness of our operators. Furthermore, we consider the teleportation scheme of Lee et al. (Phys. Rev. A 72, 024302 (2005)) and show that the partial tangles and hence teleportation fidelity can be measured. We have also shown that these partial tangles can also be used to classify genuinely entangled state, biseparable state and separable state.
Entanglement and steering are used to describe quantum inseparabilities. Steerable states form a strict subset of entangled states. A natural question arises concerning how much territory steerability occupies entanglement for a general two-qubit ent angled state. In this work, we investigate the constraint relation between steerability and concurrence by using two kinds of evolutionary states and randomly generated two-qubit states. By combining the theoretical and numerical proofs, we obtain the upper and lower boundaries of steerability. And the lower boundary can be used as a sufficient criterion for steering detection. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on Werner-like state, and propose a sufficient steering criterion described by concurrence and purity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا