ترغب بنشر مسار تعليمي؟ اضغط هنا

Identified particle production, azimuthal anisotropy, and interferometry measurements in Au+Au collisions at $sqrt{s_{NN}}$ = 9.2 GeV

154   0   0.0 ( 0 )
 نشر من قبل Bedangadas Mohanty
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first measurements of identified hadron production, azimuthal anisotropy, and pion interferometry from Au+Au collisions below the nominal injection energy at the Relativistic Heavy-Ion Collider (RHIC) facility. The data were collected using the large acceptance STAR detector at $sqrt{s_{NN}}$ = 9.2 GeV from a test run of the collider in the year 2008. Midrapidity results on multiplicity density (dN/dy) in rapidity (y), average transverse momentum (<pT>), particle ratios, elliptic flow, and HBT radii are consistent with the corresponding results at similar $sqrt{s_{NN}}$ from fixed target experiments. Directed flow measurements are presented for both midrapidity and forward rapidity regions. Furthermore the collision centrality dependence of identified particle dN/dy, <pT>, and particle ratios are discussed. These results also demonstrate the readiness of the STAR detector to undertake the proposed QCD critical point search and the exploration of the QCD phase diagram at RHIC.



قيم البحث

اقرأ أيضاً

83 - Guannan Xie 2017
Due to the large masses, heavy-flavor quarks are dominantly produced in initial hard scattering processes and experience the whole evolution of the medium produced in heavy-ion collisions at RHIC energies. They are also expected to thermalize slower than light-flavor quarks. Thus the measurement of heavy quark production and azimuthal anisotropy can provide important insights into the medium properties through their interactions with the medium. In these proceedings, we report measurements of $D^0$ production and elliptic flow ($v_2$) via topological reconstruction using STARs recently installed Heavy Flavor Tracker (HFT). The new measurement of the nuclear modification factor ($R_{AA}$) of $D^0$ mesons in central Au+Au collisions at $sqrt{s_{NN}}$ = 200 GeV confirms the strong suppression at high transverse momenta ($p_{T}$) reported in the previous publication with much improved precision. We also report the measurement of elliptic flow for $D^0$ mesons in a wide transverse momentum range in 0-80% minimum-bias Au+Au collisions. The $D^0$ elliptic flow is finite for $p_{T}$ $>$ 2 GeV/c and is systematically below that of light hadrons in the same centrality interval. Furthermore, several theoretical calculations are compared to both $R_{AA}$ and $v_2$ measurements, and the charm quark diffusion coefficient is inferred to be between 2 and $sim$12.
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A u collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $langle p_xrangle$, in Cu+Au collision also exhibits approximately linear dependence on $eta$ with the intercept at about $etaapprox-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the tilted source and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $langle p_xrangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $nge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.
We present measurements of the transverse-momentum dependence of elliptic flow $v_2$ for identified pions and (anti)protons at midrapidity ($|eta|<0.35$), in 0%--5% central $p$$+$Au and $^3$He$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV. When taken together with previously published measurements in $d$$+$Au collisions at $sqrt{s_{_{NN}}}=200$ GeV, the results cover a broad range of small-collision-system multiplicities and intrinsic initial geometries. We observe a clear mass-dependent splitting of $v_2(p_{T})$ in $d$$+$Au and $^3$He$+$Au collisions, just as in large nucleus-nucleus ($A$$+$$A$) collisions, and a smaller splitting in $p$$+$Au collisions. Both hydrodynamic and transport model calculations successfully describe the data at low $p_T$ ($< 1.5$ GeV/$c$), but fail to describe various features at higher $p_T$. In all systems, the $v_2$ values follow an approximate quark-number scaling as a function of the hadron transverse kinetic energy per constituent quark($KE_T/n_q$), which was also seen previously in $A$$+$$A$ collisions.
The STAR Collaboration at the Relativistic Heavy Ion Collider reports the first measurement of inclusive jet production in peripheral and central Au+Au collisions at $sqrt{s_{NN}}$=200 GeV. Jets are reconstructed with the anti-k$_{T}$ algorithm using charged tracks with pseudorapidity $|eta|<1.0$ and transverse momentum $0.2<p_{T,jet}^{ch}<30$ GeV/$c$, with jet resolution parameter $R$=0.2, 0.3, and 0.4. The large background yield uncorrelated with the jet signal is observed to be dominated by statistical phase space, consistent with a previous coincidence measurement. This background is suppressed by requiring a high-transverse-momentum (high-$p_T$) leading hadron in accepted jet candidates. The bias imposed by this requirement is assessed, and the $p_T$ region in which the bias is small is identified. Inclusive charged-particle jet distributions are reported in peripheral and central Au+Au collisions for $5<p_{T,jet}^{ch}<25$ GeV/$c$ and $5<p_{T,jet}^{ch}<30$ GeV/$c$, respectively. The charged-particle jet inclusive yield is suppressed for central Au+Au collisions, compared to both the peripheral Au+Au yield from this measurement and to the $pp$ yield calculated using the PYTHIA event generator. The magnitude of the suppression is consistent with that of inclusive hadron production at high $p_T$, and that of semi-inclusive recoil jet yield when expressed in terms of energy loss due to medium-induced energy transport. Comparison of inclusive charged-particle jet yields for different values of $R$ exhibits no significant evidence for medium-induced broadening of the transverse jet profile for $R<0.4$ in central Au+Au collisions. The measured distributions are consistent with theoretical model calculations that incorporate jet quenching.
188 - Debasish Das 2009
Theoretical models suggest that the Quantum Chromo-Dynamics (QCD) phase diagram has a critical point demarcating the order of transition between the two phases: the hadron gas, in which the quarks are confined and the Quark-Gluon Plasma (QGP). The ce ntral goal of the experiments with relativistic heavy-ion collisions is to create and study such form of matter called the QGP and understand the QCD phase diagram. The STAR (Solenoidal Tracker At RHIC) detector is pertinent for the RHIC (Relativistic Heavy Ion Collider) energy scan program where we plan to explore this exciting physics possibility using heavy-ion collisions at various center of mass energies. A first test run with Au+Au collisions at $sqrt{s_{NN}}$ = 9.2 GeV took place in early 2008. We present the recent STAR results from this run of the identified particles (pion, kaon and proton) transverse momentum spectra and ratios. Also we shall present and discuss the results of the azimuthal anisotropy parameters ($v_{1}$, $v_{2}$) along with the pion interferometry measurements. These recent results from Au+Au collisions at $sqrt{s_{NN}}$ = 9.2 GeV are compared with other SPS and RHIC measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا