ﻻ يوجد ملخص باللغة العربية
We present a multi-wavelength study of the nature of the SDSS galaxies divided into fine classes based on their morphology, colour and spectral features. The SDSS galaxies are classified into early-type and late-type; red and blue; passive, HII, Seyfert and LINER, which returns a total of 16 fine classes of galaxies. The properties of galaxies in each fine class are investigated from radio to X-ray, using 2MASS, IRAS, FIRST, NVSS, GALEX and ROSAT data. The UV - optical - NIR colours of blue early-type galaxies (BEGs) seem to result from the combination of old stellar population and recent star formation (SF). Non-passive red early-type galaxies (REGs) have larger metallicity and younger age than passive REGs, which implies that non-passive REGs have suffered recent SF adding young and metal-rich stars to them. The radio detection fraction of REGs strongly depends on their optical absolute magnitudes, while that of most late-type galaxies does not, implying the difference in their radio sources: AGN and SF. The UV - optical colours and the radio detection fraction of passive RLGs show that they have properties similar to REGs rather than non-passive RLGs. Dust extinction may not be a dominant factor making RLGs red, because RLGs are detected in the mid- and far-infrared bands less efficiently than blue late-type galaxies (BLGs). The passive BLGs have very blue UV - optical - NIR colours, implying either recent SF quenching or current SF in their outskirts. Including star formation rate, other multi-wavelength properties in each fine class are investigated, and their implication on the identity of each fine class is discussed (abridged).
We present a study on the environments of the SDSS galaxies divided into fine classes based on their morphology, colour and spectral features. The SDSS galaxies are classified into early-type and late-type; red and blue; passive, HII, Seyfert and LIN
Massive spectroscopic surveys like the SDSS have revolutionized the way we study AGN and their relations to the galaxies they live in. A first step in any such study is to define samples of different types of AGN on the basis of emission line ratios.
We investigate possible environmental and morphological trends in the $zsim0$ bar fraction using two carefully selected samples representative of a low-density environment (the isolated galaxies from the AMIGA sample) and of a dense environment (gala
We assess the effects of simulated active galactic nuclei (AGNs) on the colour and morphology measurements of their host galaxies. To test the morphology measurements, we select a sample of galaxies not known to host AGNs and add a series of point so
We investigate the UV-optical (longward of Ly$alpha$ 1216AA) spectral variability of nearly 9000 quasars ($0<z<4$) using multi-epoch photometric data within the SDSS Stripe 82 region. The regression slope in the flux-flux space of a quasar light curv