ترغب بنشر مسار تعليمي؟ اضغط هنا

The N_f^3 g^6 term in the pressure of hot QCD

114   0   0.0 ( 0 )
 نشر من قبل A. Gynther
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We determine the first independent part of the g^6 coefficient in the weak coupling expansion of the QCD pressure at high temperatures, the one proportional to the maximal power of the number of quark flavors N_f. In addition to introducing and developing computational methods that can be used in evaluating other parts of the expansion, our calculation provides a result that becomes dominant in the limit of large N_f and a fixed effective coupling g_{eff}^2 = g^2 N_f/2.

قيم البحث

اقرأ أيضاً

We update Monte Carlo simulations of the three-dimensional SU(3) + adjoint Higgs theory, by extrapolating carefully to the infinite volume and continuum limits, in order to estimate the contribution of the infrared modes to the pressure of hot QCD. T he sum of infrared contributions beyond the known 4-loop order turns out to be a smooth function, of a reasonable magnitude and specific sign. Unfortunately, adding this function to the known 4-loop terms does not improve the match to four-dimensional lattice data, in spite of the fact that other quantities, such as correlation lengths, spatial string tension, or quark number susceptibilities, work well within the same setup. We outline possible ways to reduce the mismatch.
We report on a non-perturbative computation of the renormalization factor Z_A of the axial vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action and also recall our recent determina tion of the improvement coefficient c_A. Our normalization and improvement conditions are formulated at constant physics in a Schrodinger functional setup. The normalization condition exploits the full, massive axial Ward identity to reduce finite quark mass effects in the evaluation of Z_A and correlators with boundary wave functions to suppress excited state contributions in the pseudoscalar channel.
The QCD phase diagram at imaginary chemical potential exhibits a rich structure and studying it can constrain the phase diagram at real values of the chemical potential. Moreover, at imaginary chemical potential standard numerical techniques based on importance sampling can be applied, since no sign problem is present. In the last decade, a first understanding of the QCD phase diagram at purely imaginary chemical potential has been developed, but most of it is so far based on investigations on coarse lattices ($N_tau=4$, $a=0.3:$fm). Considering the $N_f=2$ case, at the Roberge-Weiss critical value of the imaginary chemical potential, the chiral/deconfinement transition is first order for light/heavy quark masses and second order for intermediate values of the mass: there are then two tricritical masses, whose position strongly depends on the lattice spacing and on the discretization. On $N_tau=4$, we have the chiral $m_pi^{text{tric.}}=400:$MeV with unimproved staggered fermions and $m_pi^{text{tric.}}gtrsim900:$MeV with unimproved pure Wilson fermions. Employing finite size scaling we investigate the change of this tricritical point between $N_tau=4$ and $N_tau=6$ as well as between Wilson and staggered discretizations.
Thanks to dimensional reduction, the contributions to the hot QCD pressure coming from so-called soft modes can be studied via an effective three-dimensional theory named Electrostatic QCD (spatial Yang-Mills fields plus an adjoint Higgs scalar). The poor convergence of the perturbative series within EQCD suggests to perform lattice measurements of some of the associated gluon condensates. These turn out, however, to be plagued by large discretization artifacts. We discuss how Numerical Stochastic Perturbation Theory can be exploited to determine the full lattice spacing dependence of one of these condensates up to 4-loop order, and sharpen our tools on a concrete 2-loop example.
We consider variants of dimensional regularization, including the four-dimensional helicity scheme (FDH) and dimensional reduction (DRED), and present the gluon and quark form factors in the FDH scheme at next-to-next-to-leading order. We also discus s the generalization of the infrared factorization formula to FDH and DRED. This allows us to extract the cusp anomalous dimension as well as the quark and gluon anomalous dimensions at next-to-next-to-leading order in the FDH and DRED scheme, using $overline{text{MS}}$ and $overline{text{DR}}$ renormalization. To obtain these results we also present the renormalization procedure in these schemes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا