ﻻ يوجد ملخص باللغة العربية
We consider the semiclassical (zero-dispersion) limit of the one-dimensional focusing Nonlinear Schroedinger equation (NLS) with decaying potentials. If a potential is a simple rapidly oscillating wave (the period has the order of the semiclassical parameter epsilon) with modulated amplitude and phase, the space-time plane subdivides into regions of qualitatively different behavior, with the boundary between them consisting typically of collection of piecewise smooth arcs (breaking curve(s)). In the first region the evolution of the potential is ruled by modulation equations (Whitham equations), but for every value of the space variable x there is a moment of transition (breaking), where the solution develops fast, quasi-periodic behavior, i.e., the amplitude becomes also fastly oscillating at scales of order epsilon. The very first point of such transition is called the point of gradient catastrophe. We study the detailed asymptotic behavior of the left and right edges of the interface between these two regions at any time after the gradient catastrophe. The main finding is that the first oscillations in the amplitude are of nonzero asymptotic size even as epsilon tends to zero, and they display two separate natural scales; of order epsilon in the parallel direction to the breaking curve in the (x,t)-plane, and of order epsilon ln(epsilon) in a transversal direction. The study is based upon the inverse-scattering method and the nonlinear steepest descent method.
We study the wave breaking mechanism for the weakly dispersive defocusing nonlinear Schroedinger (NLS) equation with a constant phase dark initial datum that contains a vacuum point at the origin. We prove by means of the exact solution to the initia
The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated $N$-phase nonlinear wave solutions to the focusing nonlinear Schrodinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular s
We show that the number of solutions of Schroedinger Maxwell system on a smooth bounded domain in R^3 depends on the topological properties of the domain. In particular we consider the Lusternik-Schnirelmann category and the Poincare polynomial of the domain.
One-dimensional (1D) Nonlinear Schroedinger Equaation (NLS) provides a good approximation to attractive Bose-Einshtein condensate (BEC) in a quasi 1D cigar-shaped optical trap in certain regimes. 1D NLS is an integrable equation that can be solved th
The $n$-fold Darboux transformation $T_{n}$ of the focusing real mo-di-fied Kor-te-weg-de Vries (mKdV) equation is expressed in terms of the determinant representation. Using this representation, the $n$-soliton solutions of the mKdV equation are als