ترغب بنشر مسار تعليمي؟ اضغط هنا

Structure and Kinematics of the Stellar Halos and Thick Disks of the Milky Way Based on Calibration Stars from SDSS DR7

45   0   0.0 ( 0 )
 نشر من قبل Timothy C. Beers
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Daniela Carollo




اسأل ChatGPT حول البحث

The structure and kinematics of the recognized stellar components of the Milky Way are explored, based on well-determined atmospheric parameters and kinematic quantities for 32360 calibration stars from the Sloan Digital Sky Survey (SDSS) and its first extension, (SDSS-II), which included the sub-survey SEGUE: Sloan Extension for Galactic Understanding and Exploration. Full space motions for a sub-sample of 16920 stars, exploring a local volume within 4 kpc of the Sun, are used to derive velocity ellipsoids for the inner- and outer-halo components of the Galaxy, as well as for the canonical thick-disk and proposed metal-weak thick-disk populations. We first examine the question of whether the data require the presence of at least a two-component halo in order to account for the rotational behavior of likely halo stars in the local volume, and whether more than two components are needed. We also address the question of whether the proposed metal-weak thick disk is kinematically and chemically distinct from the canonical thick disk. In addition, we consider the fractions of each component required to understand the nature of the observed kinematic behavior of the stellar populations of the Galaxy as a function of distance from the plane. Scale lengths and scale heights for the thick-disk and metal-weak thick-disk components are determined. Spatial density profiles for the inner- and outer-halo populations are inferred from a Jeans Theorem analysis. The full set of calibration stars (including those outside the local volume) is used to test for the expected changes in the observed stellar metallicity distribution function with distance above the Galactic plane in-situ, due to the changing contributions from the underlying stellar populations. [abridged]

قيم البحث

اقرأ أيضاً

240 - M.C. Smith 2009
We construct a new sample of ~1700 solar neighbourhood halo subdwarfs from the Sloan Digital Sky Survey, selected using a reduced proper motion diagram. Radial velocities come from the SDSS spectra and proper motions from the light-motion curve catal ogue of Bramich et al. (2008). Using a photometric parallax relation to estimate distances gives us the full phase-space coordinates. Typical velocity errors are in the range 30-50 km/s. This halo sample is one of the largest constructed to-date and the disc contamination is at a level of < 1 per cent. This enables us to calculate the halo velocity dispersion to excellent accuracy. We find that the velocity dispersion tensor is aligned in spherical polar coordinates and that (sigma_r, sigma_phi, sigma_theta) = (143 pm 2, 82 pm 2, 77 pm 2) km/s. The stellar halo exhibits no net rotation, although the distribution of v_phi shows tentative evidence for asymmetry. The kinematics are consistent with a mildly flattened stellar density falling with distance like r^{-3.75}. Using the full phase-space coordinates, we look for signs of kinematic substructure in the stellar halo. We find evidence for four discrete overdensities localised in angular momentum and suggest that they may be possible accretion remnants. The most prominent is the solar neighbourhood stream previously identified by Helmi et al. (1999), but the remaining three are new. One of these overdensities is potentially associated with a group of four globular clusters (NGC5466, NGC6934, M2 and M13) and raises the possibility that these could have been accreted as part of a much larger progenitor.
We map the stellar structure of the Galactic thick disk and halo by applying color-magnitude diagram (CMD) fitting to photometric data from the SEGUE survey, allowing, for the first time, a comprehensive analysis of their structure at both high and l ow latitudes using uniform SDSS photometry. Incorporating photometry of all relevant stars simultaneously, CMD fitting bypasses the need to choose single tracer populations. Using old stellar populations of differing metallicities as templates we obtain a sparse 3D map of the stellar mass distribution at |Z|>1 kpc. Fitting a smooth Milky Way model comprising exponential thin and thick disks and an axisymmetric power-law halo allows us to constrain the structural parameters of the thick disk and halo. The thick-disk scale height and length are well constrained at 0.75+-0.07 kpc and 4.1+-0.4 kpc, respectively. We find a stellar halo flattening within ~25 kpc of c/a=0.88+-0.03 and a power-law index of 2.75+-0.07 (for 7<R_{GC}<~30 kpc). The model fits yield thick-disk and stellar halo densities at the solar location of rho_{thick,sun}=10^{-2.3+-0.1} M_sun pc^{-3} and rho_{halo,sun}=10^{-4.20+-0.05} M_sun pc^{-3}, averaging over any substructures. Our analysis provides the first clear in situ evidence for a radial metallicity gradient in the Milky Ways stellar halo: within R<~15 kpc the stellar halo has a mean metallicity of [Fe/H]=-1.6, which shifts to [Fe/H]=-2.2 at larger radii. Subtraction of the best-fit smooth and symmetric model from the overall density maps reveals a wealth of substructures at all latitudes, some attributable to known streams and overdensities, and some new. A simple warp cannot account for the low latitude substructure, as overdensities occur simultaneously above and below the Galactic plane. (abridged)
We investigate the stellar kinematics of the Galactic disc in 7 $<$ $R$ $<$ 13,kpc using a sample of 118,945 red giant branch (RGB) stars from LAMOST and Gaia. We characterize the median, dispersion and skewness of the distributions of the 3D stellar velocities, actions and orbital parameters across the age-metallicity and the disc $R$ -- $Z$ plane. Our results reveal abundant but clear stellar kinematic patterns and structures in the age -- metallicity and the disc $R$ -- $Z$ plane. The most prominent feature is the strong variations of the velocity, action, and orbital parameter distributions from the young, metal-rich thin disc to the old, metal-poor thick disc, a number of smaller-scale structures -- such as velocity streams, north-south asymmetries, and kinematic features of spiral arms -- are clearly revealed. Particularly, the skewness of $V_{phi}$ and $J_{phi}$ reveals a new substructure at $Rsimeq12$,kpc and $Zsimeq0$,kpc, possibly related to dynamical effects of spiral arms in the outer disc. We further study the stellar migration through analysing the stellar orbital parameters and stellar birth radii. The results suggest that the thick disc stars near the solar radii and beyond are mostly migrated from the inner disc of $Rsim4 - 6$,kpc due to their highly eccentrical orbits. Stellar migration due to dynamical processes with angular momentum transfer (churning) are prominent for both the old, metal-rich stars (outward migrators) and the young metal-poor stars (inward migrators). The spatial distribution in the $R$ -- $Z$ plane for the inward migrators born at a Galactocentric radius of $>$12,kpc show clear age stratifications, possibly an evidence that these inward migrators are consequences of splashes triggered by merger events of satellite galaxies that have been lasted in the past few giga years.
83 - Juntai Shen 2020
The Milky Way is a spiral galaxy with the Schechter characteristic luminosity $L_*$, thus an important anchor point of the Hubble sequence of all spiral galaxies. Yet the true appearance of the Milky Way has remained elusive for centuries. We review the current best understanding of the structure and kinematics of our home galaxy, and present an updated scientifically accurate visualization of the Milky Way structure with almost all components of the spiral arms, along with the COBE image in the solar perspective. The Milky Way contains a strong bar, four major spiral arms, and an additional arm segment (the Local arm) that may be longer than previously thought. The Galactic boxy bulge that we observe is mostly the peanut-shaped central bar viewed nearly end-on with a bar angle of 25-30 degrees from the Sun-Galactic center line. The bar transitions smoothly from a central peanut-shaped structure to an extended thin part that ends around R ~ 5 kpc. The Galactic bulge/bar contains ~ 30-40% of the total stellar mass in the Galaxy. Dynamical modelling of both the stellar and gas kinematics yields a bar pattern rotation speed of ~ 35-40 km/s/kpc, corresponding to a bar rotation period of ~ 160-180 Myr. From a galaxy formation point of view, our Milky Way is probably a pure-disk galaxy with little room for a significant merger-made, classical spheroidal bulge, and we give a number of reasons why this is the case.
How the Milky Way has accumulated its mass over the Hubble time, whether significant amounts of gas and stars were accreted from satellite galaxies, or whether the Milky Way has experienced an initial gas assembly and then evolved more-or-less in iso lation is one of the burning questions in modern astronomy, because it has consequences for our understanding of galaxy formation in the cosmological context. Here we present the evolutionary model of a Milky Way-type satellite system zoomed into a cosmological large-scale simulation. Embedded into Dark Matter halos and allowing for baryonic processes these chemo-dynamical simulations aim at studying the gas and stellar loss from the satellites to feed the Milky Way halo and the stellar chemical abundances in the halo and the satellite galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا