ترغب بنشر مسار تعليمي؟ اضغط هنا

CP Violation in Antineutrino-Electron Elastic Scattering

36   0   0.0 ( 0 )
 نشر من قبل Wieslaw Sobk\\'ow
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Elastic scattering of transversely polarized electron antineutrino beam off unpolarized electrons can be used to detect the CP-violating effects by measuring the azimuthal asymmetry of recoil electrons caused by the interference terms between the standard vector $c_{V}^{L}$, axial $c_{A}^{L}$ couplings of left-chirality antineutrinos and exotic scalar $c_{S}^{R}$ coupling of right-chirality ones in the differential cross section. It would be a positive evidence for the existence of the exotic antineutrino states. Moreover, we also show that the differential cross section for the $overline{ u} e^- $ scattering can be obtained from the one for the $ u e$ scattering, if one makes the substitution $c_{T}^{R} to -c_{T}^{R}$, $c_{A}^{L} to -c_{A}^{L}$, ${bf q}to -{bf q}$, ${boldmath $hat{eta}_{ u}$}to -{boldmath $hat{eta}_{ u}$}$.

قيم البحث

اقرأ أيضاً

A recently developed Standard-Model Extension (SME) formalism for neutrino oscillations that includes Lorentz and CPT violation is used to analyze the sidereal time variation of the neutrino event excess measured by the Liquid Scintillator Neutrino D etector (LSND) experiment. The LSND experiment, performed at Los Alamos National Laboratory, observed an excess, consistent with neutrino oscillations, of ${bar u}_e$ in a beam of ${bar u}_mu$. It is determined that the LSND oscillation signal is consistent with no sidereal variation. However, there are several combinations of SME coefficients that describe the LSND data; both with and without sidereal variations. The scale of Lorentz and CPT violation extracted from the LSND data is of order $10^{-19}$ GeV for the SME coefficients $a_L$ and $E times c_L$. This solution for Lorentz and CPT violating neutrino oscillations may be tested by other short baseline neutrino oscillation experiments, such as the MiniBooNE experiment.
The presence of new neutrino-quark interactions can enhance, deplete or distort the coherent elastic neutrino-nucleus scattering (CEvNS) event rate. The new interactions may involve CP violating phases that can potentially affect these features. Assu ming light vector mediators, we study the effects of CP violation on the CEvNS process in the COHERENT sodium-iodine, liquid argon and germanium detectors. We identify a region in parameter space for which the event rate always involves a dip and another one for which this is never the case. We show that the presence of a dip in the event rate spectrum can be used to constraint CP violating effects, in such a way that the larger the detector volume the tighter the constraints. Furthermore, it allows the reconstruction of the effective coupling responsible for the signal with an uncertainty determined by recoil energy resolution. In the region where no dip is present, we find that CP violating parameters can mimic the Standard Model CEvNS prediction or spectra induced by real parameters. We point out that the interpretation of CEvNS data in terms of a light vector mediator should take into account possible CP violating effects. Finally, we stress that our results are qualitatively applicable for CEvNS induced by solar or reactor neutrinos. Thus, the CP violating effects discussed here and their consequences should be taken into account as well in the analysis of data from multi-ton dark matter detectors or experiments such as CONUS, $ u$-cleus or CONNIE.
Three possibilities for the origin of CP violation are discussed: (1) the Standard Model in which all CP violation is due to one parameter in the CKM matrix, (2) the superweak model in which all CP violation is due to new physics and (3) the Standard Model plus new physics. A major goal of B physics is to distinguish these possibilities. CP violation implies time reversal violation (TRV) but direct evidence for TRV is difficult to obtain.
Theoretical predictions for elastic neutrino-electron scattering have no hadronic or nuclear uncertainties at leading order making this process an important tool for normalizing neutrino flux. However, the process is subject to large radiative correc tions that differ according to experimental conditions. In this paper, we collect new and existing results for total and differential cross sections accompanied by radiation of one photon, $ u e to u e (gamma)$. We perform calculations within the Fermi effective theory and provide analytic expressions for the electron energy spectrum and for the total electromagnetic energy spectrum as well as for double- and triple-differential cross sections with respect to electron energy, electron angle, photon energy, and photon angle. We discuss illustrative applications to accelerator-based neutrino experiments and provide the most precise up-to-date values of neutrino-electron scattering cross sections. We present an analysis of theoretical error, which is dominated by the $sim 0.2 - 0.4%$ uncertainty of the hadronic correction. We also discuss how searches for new physics can be affected by radiative corrections.
225 - Michael Gronau 2007
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا