ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric Anomalies in a New Manganocuprate, Gd3Ba2Mn2Cu2O12

52   0   0.0 ( 0 )
 نشر من قبل Rayaprol Sudhindra Dr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dielectric response has been studied for a new manganocuprate, Gd3Ba2Mn2Cu2O12 (Gd3222) as a function of temperature (100 - 300 K) and frequency (75 kHz to 1 MHz). The dielectric constant (e) exhibits a two step increase (two peaks) in e(T) with increasing temperature from 100 to 300 K. The first peak is seen around 150 K and the second one around 210 K (both for 75 kHz). Increasing frequency shifts both the peaks to higher temperature side. The behavior of dielectric constant (e) and dielectric loss (tan_delta) matches with glassy behavior observed in many dipolar molecules.

قيم البحث

اقرأ أيضاً

The manganocuprate compound Gd3Ba2Mn2Cu2O12 (Gd-3222) has been synthesized by conventional solid state reaction method and its magnetic behavior has been studied by dc and ac magnetization (M) and heat capacity (C) measurements as a function of tempe rature (T). This compound crystallizes in a tetragonal structure (space group I4/mmm). We find that this compound exhibits three magnetic transitions, around 2.5, 4.8 and 9 K, as inferred from dc and ac magnetic susceptibility (chi) data. However, no evidence for a well-defined lambda-anomaly is found in C(T) above 1.8 K, though there is a gradual upturn below about 10 K. An application of a magnetic field results in a peak around 5K, while ac chi appears to show a very weak frequency dependence below 9 K. Isothermal M curve at 1.8 K exhibits a weak hysteresis without any evidence for saturation even at fields as high as 120 kOe. These results imply that this compound undergoes a spin-glass-like freezing at low temperatures, though the exact nature of the magnetic transition at 10 K is not clear. The magnitude of the magnetocaloric effect, as inferred from M and C data, is quite large over a wide temperature range below 50 K peaking around 4 K.
The dynamical, dielectric and elastic properties of GeTe, a ferroelectric material in its low temperature rhombohedral phase, have been investigated using first-principles density functional theory. We report the electronic energy bands, phonon dispe rsion curves, electronic and low frequency dielectric tensors, infra-red reflectivity, Born effective charges, elastic and piezoelectric tensors and compare them with the existing theoretical and experimental results, as well as with similar quantities available for other ferroelectric materials, when appropriate.
The ZFC and FC magnetization dependence on temperature was measured for BiFeO3 ceramics at the applied magnetic field up to H=10T in 2K-1000K range. The antiferromagnetic order was detected from the hysteresis loops below the Neel temperature TN=646K . In the low magnetic field range there is an anomaly in M(H), probably due to the field-induced transition from circular cycloid to the anharmonic cycloid. At high field limit we observe the field-induced transition to the homogeneous spin order. From the M(H) dependence we deduce that above the field Ha the spin cycloid becomes anharmonic which causes nonlinear magnetization, and above the field Hc the cycloid vanishes and the system again exhibits linear magnetization M(H). The anomalies in the electric properties, which are manifested within the 640K-680K range, coincide to the anomaly in the magnetization M(T) dependence, which occurs in the vicinity of TN. We propose to ascribe this coincidence to the critical behaviour of the chemical potential, related to the magnetic phase transition.
We investigated the dielectric properties of Pb(Fe1/2Nb1/2)1-xTixO3 single crystals below room temperature. Two dielectric anomalies were detected in sample A while only one was detected in sample B in the temperature range 90~300 K. A Debye-like rel axation with strong frequency dispersion was detected in both samples. The pre-edge XAFS suggests that this dielectric anomaly is induced by the hopping conductivity between Fe2+ and Fe3+. The EXAFS results give us a clear picture of the local structure of iron ions. The weak frequency dependent dielectric anomaly only observed in sample A is supposed to be due to the dipole glass behavior.
We report the observation of a transparency window in the dielectric resonant absorption spectrum of the relaxor ferroelectric K1-xLixTaO3 (KLT) in the vicinity of its weakly first order transition. This phenomenon is shown to be conceptually similar to the electro-magnetically induced transparency (EIT) phenomenon observed in atomic vapors, which can be modeled classically by a driven master -slave oscillator system. In KLT, it reveals the presence of macroscopic hetero-phase fluctuations and provides unique information on the nature and mechanism of the phase transition in relaxors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا