ترغب بنشر مسار تعليمي؟ اضغط هنا

Construction of Coupled Period-Mass Functions in Extrasolar Planets through the Nonparametric Approach

446   0   0.0 ( 0 )
 نشر من قبل Ing-Guey Jiang
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ing-Guey Jiang




اسأل ChatGPT حول البحث

Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.



قيم البحث

اقرأ أيضاً

279 - Li-Chin Yeh 2009
Using the period and mass data of two hundred and seventy-nine extrasolar planets, we have constructed a coupled period-mass function through the non-parametric approach. This analytic expression of the coupled period-mass function has been obtained for the first time in this field. Moreover, due to a moderate period-mass correlation, the shapes of mass/period functions vary as a function of period/mass. These results of mass and period functions give way to two important implications: (1) the deficit of massive close-in planets is confirmed, and (2) the more massive planets have larger ranges of possible semi-major axes. These interesting statistical results will provide important clues into the theories of planetary formation.
118 - Ing-Guey Jiang 2009
Employing a catalog of 175 extrasolar planets (exoplanets) detected by the Doppler-shift method, we constructed the independent and coupled mass-period functions. It is the first time in this field that the selection effect is considered in the coupl ed mass-period functions. Our results are consistent with those in Tabachnik and Tremaine (2002) with the major differences that we obtain a flatter mass function but a steeper period function. Moreover, our coupled mass-period functions show that about 2.5 percent of stars would have a planet with mass between Earth Mass and Neptune Mass, and about 3 percent of stars would have a planet with mass between Neptune Mass and Jupiter Mass.
106 - Ing-Guey Jiang 2007
In addition to fitting the data of 233 extra-solar planets with power laws, we construct a correlated mass-period distribution function of extrasolar planets, as the first time in this field. The algorithm to generate a pair of positively correlated beta-distributed random variables is introduced and used for the construction of correlated distribution functions. We investigate the mass-period correlations of extrasolar planets both in the linear and logarithm spaces, determine the confidence intervals of the correlation coefficients, and confirm that there is a positive mass-period correlation for the extrasolar planets. In addition to the paucity of massive close-in planets, which makes the main contribution on this correlation, there are other fine structures for the data in the mass-period plane.
The ESA PLATO space mission is devoted to unveiling and characterizing new extrasolar planets and their host stars. This mission will encompass a very large field of view, granting it the potential to survey up to one million stars depending on the f inal observation strategy. The telemetry budget of the spacecraft cannot handle transmitting individual images for such a huge stellar sample at the right cadence, so the development of an appropriate strategy to perform on-board data reduction is mandatory. We employ aperture photometry to produce stellar light curves in flight. Our aim is thus to find the mask model that optimizes the scientific performance of the reduced data. We considered three distinct aperture models: binary mask, weighted Gaussian mask, and weighted gradient mask giving lowest noise-to-signal ratio, computed through a novel direct method. An innovative criterion was adopted for choosing between different mask models. We designated as optimal the model providing the best compromise between sensitivity to detect true and false planet transits. We determined the optimal model based on simulated noise-to-signal ratio and frequency of threshold crossing events. Our results show that, although the binary mask statistically presents a few percent higher noise-to-signal ratio compared to weighted masks, both strategies have very similar efficiency in detecting legitimate planet transits. When it comes to avoiding spurious signals from contaminant stars however the binary mask statistically collects considerably less contaminant flux than weighted masks, thereby allowing the former to deliver up to $sim$30% less false transit signatures at $7.1sigma$. Our proposed approach for choosing apertures has been proven to be decisive for the determination of a mask model capable to provide near maximum planet yield and substantially reduced occurrence of false positives.
120 - T. Roell , A. Seifahrt (1 , 2 2012
Analyzing exoplanets detected by radial velocity or transit observations, we determine the multiplicity of exoplanet host stars in order to study the influence of a stellar companion on the properties of planet candidates. Matching the host stars of exoplanet candidates detected by radial velocity or transit observations with online multiplicity catalogs in addition to a literature search, 57 exoplanet host stars are identified having a stellar companion. The resulting multiplicity rate of at least 12 percent for exoplanet host stars is about four times smaller than the multiplicity of solar like stars in general. The mass and the number of planets in stellar multiple systems depend on the separation between their host star and its nearest stellar companion, e.g. the planetary mass decreases with an increasing stellar separation. We present an updated overview of exoplanet candidates in stellar multiple systems, including 15 new systems (compared to the latest summary from 2009).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا