ﻻ يوجد ملخص باللغة العربية
Let K be a function field with constant field k and let infinity be a fixed place of K. Let C be the Dedekind domain consisting of all those elements of K which are integral outside infinity. The group G=GL_2(C) is important for a number of reasons. For example, when k is finite, it plays a central role in the theory of Drinfeld modular curves. Many properties follow from the action of G on its associated Bruhat-Tits tree, T. Classical Bass-Serre theory shows how a presentation for G can be derived from the structure of the quotient graph (or fundamental domain) GT. The shape of this quotient graph (for any G) is described in a fundamental result of Serre. However there are very few known examples for which a detailed description of GT is known. (One such is the rational case, C=k[t], i.e. when K has genus zero and infinity has degree one.) In this paper we give a precise description of GT for the case where the genus of K is zero, K has no places of degree one and infinity has degree two. Among the known examples a new feature here is the appearance of vertex stabilizer subgroups (of G) which are of quaternionic type.
Given a split semisimple group over a local field, we consider the maximal Satake-Berkovich compactification of the corresponding Euclidean building. We prove that it can be equivariantly identified with the compactification which we get by embedding
We compute explicit rational models for some Hilbert modular surfaces corresponding to square discriminants, by connecting them to moduli spaces of elliptic K3 surfaces. Since they parametrize decomposable principally polarized abelian surfaces, they
In cite{FGLNP}, Fox, Gromov, Lafforgue, Naor and Pach, in a respond to a question of Gromov cite{G}, constructed bounded degree geometric expanders, namely, simplical complexes having the affine overlapping property. Their explicit constructions are
We apply the theory of fundamental strata of Bremer and Sage to find cohomologically rigid $G$-connections on the projective line, generalising the work of Frenkel and Gross. In this theory, one studies the leading term of a formal connection with re
The Tits core G^+ of a totally disconnected locally compact group G is defined as the abstract subgroup generated by the closures of the contraction groups of all its elements. We show that a dense subgroup is normalised by the Tits core if and only