ترغب بنشر مسار تعليمي؟ اضغط هنا

A low field technique for measuring magnetic and magneto-resistance anisotropy coefficients applied to (Ga,Mn)As

81   0   0.0 ( 0 )
 نشر من قبل Andrew Rushforth
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a simple, low cost, magneto-transport method for rapidly characterizing the magnetic anisotropy and anisotropic magneto-resistance (AMR) of ferromagnetic devices with uniaxial magnetic anisotropy. This transport technique is the analogue of magnetic susceptibility measurements of bulk material but is applicable to very small samples with low total moment. The technique is used to characterize devices fabricated from the dilute magnetic semiconductor (Ga,Mn)As. The technique allows us to probe the behavior of the parameters close to the Curie temperature, in the limit of the applied magnetic field tending to zero. This avoids the complications arising from the presence of paramagnetism.

قيم البحث

اقرأ أيضاً

194 - K. Pappert , C. Gould , M. Sawicki 2008
This paper discusses transport methods for the investigation of the (Ga,Mn)As magnetic anisotropy. Typical magnetoresistance behaviour for different anisotropy types is discussed, focusing on an in depth discussion of the anisotropy fingerprint techn ique and extending it to layers with primarily uniaxial magnetic anisotropy. We find that in all (Ga,Mn)As films studied, three anisotropy components are always present. The primary biaxial along ([100] and [010]) along with both uniaxial components along the [110] and [010] crystal directions which are often reported separately. Various fingerprints of typical (Ga,Mn)As transport samples at 4 K are included to illustrate the variation of the relative strength of these anisotropy terms. We further investigate the temperature dependence of the magnetic anisotropy and the domain wall nucleation energy with the help of the fingerprint method.
We have studied current-driven domain wall motion in modified Ga_0.95Mn_0.05As Hall bar structures with perpendicular anisotropy by using spatially resolved Polar Magneto-Optical Kerr Effect Microscopy and micromagnetic simulation. Regardless of the initial magnetic configuration, the domain wall propagates in the opposite direction to the current with critical current of 1~2x10^5A/cm^2. Considering the spin transfer torque term as well as various effective magnetic field terms, the micromagnetic simulation results are consistent with the experimental results. Our simulated and experimental results suggest that the spin-torque rather than Oersted field is the reason for current driven domain wall motion in this material.
Atomic Force Microscopy and Grazing incidence X-ray diffraction measurements have revealed the presence of ripples aligned along the $[1bar{1}0]$ direction on the surface of (Ga,Mn)As layers grown on GaAs(001) substrates and buffer layers, with perio dicity of about 50 nm in all samples that have been studied. These samples show the strong symmetry breaking uniaxial magnetic anisotropy normally observed in such materials. We observe a clear correlation between the amplitude of the surface ripples and the strength of the uniaxial magnetic anisotropy component suggesting that these ripples might be the source of such anisotropy.
We investigate the anisotropy of magnetic reversal and current-driven domain wall motion in annealed Ga_0.95Mn_0.05As thin films and Hall bar devices with perpendicular magnetic anisotropy. Hall bars with current direction along the [110] and [1-10] crystallographic axes are studied. The [110] device shows larger coercive field than the [1-10] device. Strong anisotropy is observed during magnetic reversal between [110] and [1-10] directions. A power law dependence is found for both devices between the critical current (JC) and the magnetization (M), with J_C is proportional to M^2.6. The domain wall motion is strongly influenced by the presence of local pinning centres.
The large tunneling anisotropic magneto-resistance of a single $p^{++}$-(Ga,Mn)As/$n^{+}$-GaAs Zener-Esaki diode is evidenced in a perpendicular magnetic field over a large temperature and voltage range. Under an applied bias, the tunnel junction tra nsparency is modified, allowing to continuously tune anisotropic transport properties between the tunneling and the ohmic regimes. Furthermore, an asymmetric bias-dependence of the anisotropic tunneling magneto-resistance is also observed: a reverse bias highlights the full (Ga,Mn)As valence band states contribution, whereas a forward bias only probes part of the density of states and reveals opposite contributions from two subbands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا