ترغب بنشر مسار تعليمي؟ اضغط هنا

Yetter--Drinfeld structures on Heisenberg doubles and chains

236   0   0.0 ( 0 )
 نشر من قبل Alexei Semikhatov
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف A.M. Semikhatov




اسأل ChatGPT حول البحث

For a Hopf algebra B with bijective antipode, we show that the Heisenberg double H(B^*) is a braided commutative Yetter--Drinfeld module algebra over the Drinfeld double D(B). The braiding structure allows generalizing H(B^*) = B^{*cop}braid B to Heisenberg n-tuples and chains ...braid B^{*cop}braid B braid B^{*cop}braid Bbraid..., all of which are Yetter--Drinfeld D(B)-module algebras. For B a particular Taft Hopf algebra at a 2p-th root of unity, the construction is adapted to yield Yetter--Drinfeld module algebras over the 2p^3-dimensional quantum group U_qsl(2).



قيم البحث

اقرأ أيضاً

192 - I. Heckenberger , H. Yamane 2008
The Shapovalov determinant for a class of pointed Hopf algebras is calculated, including quantized enveloping algebras, Lusztigs small quantum groups, and quantized Lie superalgebras. Our main tools are root systems, Weyl groupoids, and Lusztig type isomorphisms. We elaborate powerful novel techniques for the algebras at roots of unity, and pass to the general case using a density argument. Key words: Hopf algebra, Nichols algebra, quantum group, representation
123 - A. M. Semikhatov 2011
We rederive a popular nonsemisimple fusion algebra in the braided context, from a Nichols algebra. Together with the decomposition that we find for the product of simple Yetter-Drinfeld modules, this strongly suggests that the relevant Nichols algebr a furnishes an equivalence with the triplet W-algebra in the (p,1) logarithmic models of conformal field theory. For this, the category of Yetter-Drinfeld modules is to be regarded as an textit{entwined} category (the one with monodromy, but not with braiding).
Given a Hopf algebra $H$ and a projection $Hto A$ to a Hopf subalgebra, we construct a Hopf algebra $r(H)$, called the partial dualization of $H$, with a projection to the Hopf algebra dual to $A$. This construction provides powerful techniques in th e general setting of braided monoidal categories. The construction comprises in particular the reflections of generalized quantum groups, arxiv:1111.4673 . We prove a braided equivalence between the Yetter-Drinfeld modules over a Hopf algebra and its partial dualization.
Let $(R^{vee},R)$ be a dual pair of Hopf algebras in the category of Yetter-Drinfeld modules over a Hopf algebra $H$ with bijective antipode. We show that there is a braided monoidal isomorphism between rational left Yetter-Drinfeld modules over the bosonizations of $R$ and of $R^{vee}$, respectively. As an application of this very general category isomorphism we obtain a natural proof of the existence of reflections of Nichols algebras of semisimple Yetter-Drinfeld modules over $H$. Key words: Hopf algebras, quantum groups, Weyl groupoid
115 - Cris Negron 2020
We prove that the Drinfeld double of an arbitrary finite group scheme has finitely generated cohomology. That is to say, for G any finite group scheme, and D(G) the Drinfeld double of the group ring kG, we show that the self-extension algebra of the trivial representation for D(G) is a finitely generated algebra, and that for each D(G)-representation V the extensions from the trivial representation to V form a finitely generated module over the aforementioned algebra. As a corollary, we find that all categories rep(G)*_M dual to rep(G) are of also of finite type (i.e. have finitely generated cohomology), and we provide a uniform bound on their Krull dimensions. This paper completes earlier work of E. M. Friedlander and the author.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا