ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental demonstration of universal symmetric quantum telecloning

165   0   0.0 ( 0 )
 نشر من قبل Sascha Gaertner
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum telecloning is a multiparty quantum communication protocol which allows quantum information broadcasting. It can be, therefore, seen as a generalization of quantum teleportation. However, in contrast to quantum teleportation, it requires the resource of multipartite entanglement. Here we present an experimental demonstration of universal symmetric 1->2 quantum telecloning of qubits via four-photon polarisation entanglement.

قيم البحث

اقرأ أيضاً

We experimentally demonstrate that when three single photons transmit through two polarization channels, in a well-defined pre- and postselected ensemble, there are no two photons in the same polarization channel by weak-strength measurement, a count er-intuitive quantum counting effect called quantum pigeonhole paradox. We further show that this effect breaks down in second-order measurement. These results indicate the existence of quantum pigeonhole paradox and its operating regime.
We report an experimental demonstration of Schumachers quantum noiseless coding theorem. Our experiment employs a sequence of single photons each of which represents three qubits. We initially prepare each photon in one of a set of 8 non-orthogonal c odeword states corresponding to the value of a block of three binary letters. We use quantum coding to compress this quantum data into a two-qubit quantum channel and then uncompress the two-qubit channel to restore the original data with a fidelity approaching the theoretical limit.
We propose and experimentally demonstrate a universal quantum averaging process implementing the harmonic mean of quadrature variances. The harmonic mean protocol can be used to efficiently stabilize a set of fragile squeezed light sources with stati stically fluctuating noise levels. The averaged variances are prepared probabilistically by means of linear optical interference and measurement induced conditioning. We verify that the implemented harmonic mean outperforms the standard arithmetic mean strategy. The effect of quantum averaging is experimentally tested both for uncorrelated and partially correlated noise sources with sub-Poissonian shot noise or super-Poissonian shot noise characteristics.
137 - Hongwei Chen , Dawei Lu , Bo Chong 2011
The method of quantum cloning is divided into two main categories: approximate and probabilistic quantum cloning. The former method is used to approximate an unknown quantum state deterministically, and the latter can be used to faithfully copy the s tate probabilistically. So far, many approximate cloning machines have been experimentally demonstrated, but probabilistic cloning remains an experimental challenge, as it requires more complicated networks and a higher level of precision control. In this work, we designed an efficient quantum network with a limited amount of resources, and performed the first experimental demonstration of probabilistic quantum cloning in an NMR quantum computer. In our experiment, the optimal cloning efficiency proposed by Duan and Guo [Phys. Rev. Lett. textbf{80}, 4999 (1998)] is achieved.
The ability to communicate quantum information over long distances is of central importance in quantum science and engineering. For example, it enables secure quantum key distribution (QKD) relying on fundamental principles that prohibit the cloning of unknown quantum states. While QKD is being successfully deployed, its range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising its unconditional security. Alternatively, quantum repeaters, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we report the experimental realization of memory-enhanced quantum communication. We use a single solid-state spin memory integrated in a nanophotonic diamond resonator to implement asynchronous Bell-state measurements. This enables a four-fold increase in the secret key rate of measurement device independent (MDI)-QKD over the loss-equivalent direct-transmission method while operating megahertz clock rates. Our results represent a significant step towards practical quantum repeaters and large-scale quantum networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا