ترغب بنشر مسار تعليمي؟ اضغط هنا

Refined stellar, orbital and planetary parameters of the eccentric HAT-P-2 planetary system

379   0   0.0 ( 0 )
 نشر من قبل Andras Pal Mr.
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Andras Pal




اسأل ChatGPT حول البحث

We present refined parameters for the extrasolar planetary system HAT-P-2 (also known as HD 147506), based on new radial velocity and photometric data. HAT-P-2b is a transiting extrasolar planet that exhibits an eccentric orbit. We present a detailed analysis of the planetary and stellar parameters, yielding consistent results for the mass and radius of the star, better constraints on the orbital eccentricity, and refined planetary parameters. The improved parameters for the host star are M_star = 1.36 +/- 0.04 M_sun and R_star = 1.64 +/- 0.08 R_sun, while the planet has a mass of M_p = 9.09 +/- 0.24 M_Jup and radius of R_p = 1.16 +/- 0.08 R_Jup. The refined transit epoch and period for the planet are E = 2,454,387.49375 +/- 0.00074 (BJD) and P = 5.6334729 +/- 0.0000061 (days), and the orbital eccentricity and argument of periastron are e = 0.5171 +/- 0.0033 and omega = 185.22 +/- 0.95 degrees. These orbital elements allow us to predict the timings of secondary eclipses with a reasonable accuracy of ~15 minutes. We also discuss the effects of this significant eccentricity including the characterization of the asymmetry in the transit light curve. Simple formulae are presented for the above, and these, in turn, can be used to constrain the orbital eccentricity using purely photometric data. These will be particularly useful for very high precision, space-borne observations of transiting planets.



قيم البحث

اقرأ أيضاً

We present eight new light curves of the transiting extra-solar planet HAT-P-25b obtained from 2013 to 2016 with three telescopes at two observatories. We use the new light curves, along with recent literature material, to estimate the physical and o rbital parameters of the transiting planet. Specifically, we determine the mid-transit times (T$_{C}$) and update the linear ephemeris, T$_{C[0]}$=2456418.80996$pm$0.00025 [$mathrm{BJD}_mathrm{TDB}$] and P=3.65281572$pm$0.00000095 days. We carry out a search for transit timing variations (TTVs), and find no significant TTV signal at the $Delta T=$80 s-level, placing a limit on the possible strength of planet-planet interactions ($mathrm{TTV_{G}}$). In the course of our analysis, we calculate the upper mass-limits of the potential nearby perturbers. Near the 1:2, 2:1, and 3:1 resonances with HAT-P-25b, perturbers with masses greater than 0.5, 0.3, and 0.5 $mathrm{M_{oplus}}$ respectively, can be excluded. Furthermore, based on the analysis of TTVs caused by light travel time effect (LTTE) we also eliminate the possibility that a long-period perturber exists with $M_{rm p}> 3000 ,mathrm{M_{J}}$ within $a=11.2,{rm AU}$ of the parent star.
365 - Andras Pal 2011
In this Letter we present observations of recent HAT-P-13b transits. The combined analysis of published and newly obtained transit epochs shows evidence for significant transit timing variations since the last publicly available ephemerides. Variatio n of transit timings result in a sudden switch of transit times. The detected full range of TTV spans ~0.015 days, which is significantly more than the known TTV events exhibited by hot Jupiters. If we have detected a periodic process, its period should be at least ~3 years because there are no signs of variations in the previous observations. This argument makes unlikely that the measured TTV is due to perturbations by HAT-P-13c.
Extrasolar planets on eccentric short-period orbits provide a laboratory in which to study radiative and tidal interactions between a planet and its host star under extreme forcing conditions. Studying such systems probes how the planets atmosphere r edistributes the time-varying heat flux from its host and how the host star responds to transient tidal distortion. Here, we report the insights into the planet-star interactions in HAT-P-2s eccentric planetary system gained from the analysis of 350 hr of 4.5 micron observations with the Spitzer Space Telescope. The observations show no sign of orbit-to-orbit variability nor of orbital evolution of the eccentric planetary companion, HAT-P-2 b. The extensive coverage allows us to better differentiate instrumental systematics from the transient heating of HAT-P-2 bs 4.5 micron photosphere and yields the detection of stellar pulsations with an amplitude of approximately 40 ppm. These pulsation modes correspond to exact harmonics of the planets orbital frequency, indicative of a tidal origin. Transient tidal effects can excite pulsation modes in the envelope of a star, but, to date, such pulsations had only been detected in highly eccentric stellar binaries. Current stellar models are unable to reproduce HAT-P-2s pulsations, suggesting that our understanding of the interactions at play in this system is incomplete.
188 - Andras Pal 2008
The recently discovered transiting very hot Jupiter, HAT-P-7b, a planet detected by the telescopes of HATNet, turned out to be among the ones subjected to the highest irradiation from the parent star. As known, the combination of photometric and spec troscopic data for such an object yields the stellar, orbital and planetary parameters. In order to best characterize this particular planet, we carried out a complex analysis based on a complete and simultaneous Monte-Carlo solution using all available data. We included the discovery light curves, partial follow-up light curves, the radial velocity data, and we used the stellar evolution models to infer the stellar properties. This self-consistent way of modeling provides the most precise estimate of the a posteriori distributions of all of the system parameters of interest, and avoids making assumptions on the values and uncertainties of any of the internally derived variables describing the system. This analysis demonstrates that even partial light curve information can be valuable. This may become very important for future discoveries of planets with longer periods -- and therefore longer transit durations -- where the chance of observing a full event is small.
255 - E. K. Simpson 2010
We present SuperWASP observations of HAT-P-14b, a hot Jupiter discovered by Torres et al. The planet was found independently by the SuperWASP team and named WASP-27b after follow-up observations had secured the discovery, but prior to the publication by Torres et al. Our analysis of HAT-P-14/WASP-27 is in good agreement with the values found by Torres et al. and we refine the parameters by combining our datasets. We also provide additional evidence against astronomical false positives. Due to the brightness of the host star, V = 10, HAT-P-14 is an attractive candidate for further characterisation observations. The planet has a high impact parameter, b = 0.907 +/- 0.004, and the primary transit is close to grazing. This could readily reveal small deviations in the orbital parameters indicating the presence of a third body in the system, which may be causing the small but significant orbital eccentricity, e = 0.095 +/- 0.011. The system geometry suggests that the planet narrowly fails to undergo a secondary eclipse. However, even a non-detection would tightly constrain the system parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا