ترغب بنشر مسار تعليمي؟ اضغط هنا

Density Profiles in Seyfert Outflows

252   0   0.0 ( 0 )
 نشر من قبل Ehud Behar
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Ehud Behar




اسأل ChatGPT حول البحث

For the past decade, ionized outflows of a few 100 km/s from nearby Seyfert galaxies have been studied in great detail using high resolution X-ray absorption spectra. A recurring feature of these outflows is their broad ionization distribution including essentially ions (e.g., of Fe) from neutral to fully ionized. The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |d N_H/d (log xi)|. AMDs of Seyfert outflows can span up to five orders of magnitude in xi. We present the AMD of five outflows and show that they are all rather flat, perhaps slightly rising towards high ionization. More quantitatively, a power-law fit for log AMD ~ (log xi)^a yields slopes of 0 < a < 0.4. These slopes tightly constrain the density profiles of the wind, which until now could be addressed only by theory. If the wind is distributed on large scales, the measured slopes imply a generic density radial profile of n ~ r^{-alpha} with 1 < alpha < 1.3. This scaling rules out a mass conserving radial flow of n ~ r^{-2}, or a constant density absorber, but is consistent with a non-spherical MHD outflow model in which n ~ r^{-1} along any given line of sight. On the other hand, if ionization variations are a result of local (delta r) density gradients, e.g. as in the turbulent interstellar medium (ISM), the AMD slopes imply density scaling of n ~ delta r^{-alpha} with 0.7 < alpha < 1.0, which is quite different from the scaling of approximately n ~ delta r^{0.4} found in the Milky Way ISM and typical of incompressible turbulence.



قيم البحث

اقرأ أيضاً

UltraFast Outflows (UFOs), seen as X-ray blueshifted absorption lines in active galactic nuclei (AGNs), are considered to be a key mechanism for AGN feedback. In this scenario, UFO kinetic energy is transferred into the cold and extended molecular ou tflow observed at the mm/sub-mm wavelength, which blows away the gas and suppresses star formation and accretion onto the central black hole (BH). However, the energy transfer between the inner UFO and the outer molecular outflow has not yet fully studied mainly due to the limited sample. In this paper, we performed comparison of their kinetic energy using the mm/sub-mm published data and the X-ray archival data. Among fourteen Seyfert galaxies whose molecular outflows are detected in the IRAM/PdBI data, eight targets are bright enough to perform spectral fitting in X-ray, and we have detected UFO absorption lines in six targets with 90% significance level, using XMM-Newton and Suzaku satellites. The time-averaged UFO kinetic energy was derived from the spectral fitting. As a result, we have found that the energy-transfer rate (kinetic energy ratio of the molecular outflow to the UFO) ranges from $sim7times10^{-3}$ to $sim$1, and has a negative correlation with the BH mass, which shows that the AGN feedback is more efficient in the lower mass BHs. This tendency is consistent with the theoretical prediction that the cooling time scale of the outflowing gas becomes longer than the flow time scale when the BH mass is smaller.
The role of starburst winds versus active galactic nuclei (AGN) jets/winds in the formation of the kiloparsec scale radio emission seen in Seyferts is not yet well understood. In order to be able to disentangle the role of various components, we have observed a sample of Seyfert galaxies exhibiting kpc-scale radio emission suggesting outflows, along with a comparison sample of starburst galaxies, with the EVLA B-array in polarimetric mode at 1.4 GHz and 5~GHz. Polarization is clearly detected in three Seyfert galaxies and one starburst galaxy. The Seyfert galaxy NGC,2639, shows highly polarized secondary radio lobes, not observed before, which are aligned perpendicular to the known pair of radio lobes. The additional pair of lobes represent an older epoch of emission. A multi-epoch multi-frequency study of the starburst-Seyfert composite galaxy NGC,3079, reveals that the jet together with the starburst superwind and the galactic magnetic fields might be responsible for the well-known 8-shaped radio lobes observed in this galaxy. We find that many of the Seyfert galaxies in our sample show bubble-shaped lobes, which are absent in the starburst galaxies that do not host an AGN.
We report on strong X-ray variability and the Fe K band spectrum of the Seyfert galaxy IRAS 18325-5926 obtained from the 2001 XMM-Newton EPIC pn observation of a 120 ks duration. While the X-ray source is highly variable, the 8-10 keV band shows larg er variability than that of the lower energies. Amplified 8-10 keV flux variations are associated with two prominent flares of the X-ray source during the observation. The Fe K emission is peaked at 6.6 keV with moderate broadening. It is likely to originate from a highly ionized disc with the ionization parameter of log xi ~3. The Fe K line flux responds to the major flare, supporting its disc origin. There is a short burst of the Fe line flux with no relation to the continuum brightness for which we have no clear explanation. We also find transient, blueshifted Fe K absorption features, which can be identified with high-velocity (~0.2 c) outflows of highly ionized gas, as found in other active galaxies. The deepest absorption feature appears only briefly (~1 hr) at the onset of the major flare and disappears when the flare is declining. The rapid evolution of the absorption spectrum makes this source peculiar among the active galaxies with high velocity outflows. Another detection of the absorption feature also precedes the other flare. The variability of the absorption feature partly accounts for the excess variability in the 8-10 keV band where the absorption feature appears. Although no reverberation measurement is available, the black hole mass of 2e6 Msun is inferred from the X-ray variability. When this mass is assumed, the black hole is accreting at around the Eddington limit, which may fit the highly ionized disc and strong outflows observed in this galaxy.
Substantial evidence in the last few decades suggests that outflows from supermassive black holes (SMBH) may play a significant role in the evolution of galaxies.Large-scale outflows known as warm absorbers (WA) and fast disk winds known as ultra-fas t outflows (UFO) are commonly found in the spectra of many Seyfert galaxies and quasars, and a correlation has been suggested between them. Recent detections of low ionization and low column density outflows, but with a high velocity comparable to UFOs, challenge such initial possible correlations. Observations of UFOs in AGN indicate that their energetics may be enough to have an impact on the interstellar medium (ISM). However, observational evidence of the interaction between the inner high-ionization outflow and the ISM is still missing. We present here the spectral analysis of 12 XMM-Newton/EPIC archival observations of the quasar PG 1114+445, aimed at studying the complex outflowing nature of its absorbers. Our analysis revealed the presence of three absorbing structures. We find a WA with velocity $vsim530$ km s$^{-1}$, ionization $logxi/text{erg cm s}^{-1}sim0.35,$ and column density $log N_text{H}/text{cm}^{-2}sim22$, and a UFO with $v_text{out}sim0.145c$, $logxi/text{erg cm s}^{-1}sim4$, and $log N_text{H}/text{cm}^{-2}sim23$. We also find an additional absorber in the soft X-rays ($E<2$ keV) with velocity comparable to that of the UFO ($v_text{out}sim0.120c$), but ionization ($logxi/text{erg cm s}^{-1}sim0.5$) and column density ($log N_text{H}/text{cm}^{-2}sim21.5$) comparable with those of the WA. The ionization, velocity, and variability of the three absorbers indicate an origin in a multiphase and multiscale outflow, consistent with entrainment of the clumpy ISM by an inner UFO moving at $sim15%$ the speed of light, producing an entrained ultra-fast outflow (E-UFO).
55 - N. Menci , F. Fiore , C. Feruglio 2019
Recent advances in observations have provided a wealth of measurements of the expansions of outflows in galactic discs out to large radii in a variety of galactic hosts. To provide an updated baseline for the interpretation of such data, and to asses s to what extent the present status of the modeling is consistent with the existing observations, we provide a compact two-dimensional description for the expansion of AGN-driven shocks in realistic galactic discs with exponential gas density profiles in a disc geometry. We derive solutions for the outflow expansion and the mass outflow rates in different directions with respect to the plane of the disc. These are expressed in terms of the global properties of the host galaxy and of the central AGN to allow for an easy and direct comparison with existing observations in a variety of galactic hosts with measured properties, and out to distances $sim 10$ kpc from the centre. The results are compared with a state-of-the-art compilation of observed outflows in 19 galaxies with different measured gas and dynamical mass, allowing for a detailed, one-by-one comparison with the model predictions. The agreement we obtain for a wide range of host galaxy gas mass and AGN bolometric luminosity provides a quantitative systematic test for the modeling of AGN-driven outflows in galactic discs. We also consider a larger sample of galaxies with no reliable measurements of the gas and dynamical mass. In this case we perform a comparison of the model predictions for different bins of AGN luminosities assuming values for the gas mass and dynamical mass derived from scaling relations. The encouraging, quantitative agreement of the model predictions with a wide set of existing observations constitutes a baseline for the interpretation of forthcoming data, and for a more detailed treatment of AGN feedback in galaxy formation models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا