ﻻ يوجد ملخص باللغة العربية
We report the first observation of multiple-periodic propagating disturbances along a fan-like coronal structure simultaneously detected in both intensity and Doppler shift in the Fe XII 195 A line with the EUV Imaging Spectrometer (EIS) onboard Hinode. A new application of coronal seismology is provided based on this observation. We analyzed the EIS sit-and-stare mode observation of oscillations using the running difference and wavelet techniques. Two harmonics with periods of 12 and 25 min are detected. We measured the Doppler shift amplitude of 1-2 km/s, the relative intensity amplitude of 3%-5% and the apparent propagation speed of 100-120 km/s. The amplitude relationship between intensity and Doppler shift oscillations provides convincing evidence that these propagating features are a manifestation of slow magnetoacoustic waves. Detection lengths (over which the waves are visible) of the 25 min wave are about 70-90 Mm, much longer than those of the 5 min wave previously detected by TRACE. This difference may be explained by the dependence of damping length on the wave period for thermal conduction. Based on a linear wave theory, we derive an inclination of the magnetic field to the line-of-sight about 59$pm$8 deg, a true propagation speed of 128$pm$25 km/s and a temperature of 0.7$pm$0.3 MK near the loops footpoint from our measurements.
We present the first Hinode/EIS observations of 5 min quasi-periodic oscillations detected in a transition-region line (He II) and five coronal lines (Fe X, Fe XII, Fe XIII, Fe XIV, and Fe XV) at the footpoint of a coronal loop. The oscillations exis
Rapidly decaying long-period oscillations often occur in hot coronal loops of active regions associated with small (or micro-) flares. This kind of wave activity was first discovered with the SOHO/SUMER spectrometer from Doppler velocity measurements
Employing Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) multi-wavelength images, we have presented coronal condensations caused by magnetic reconnection between a system of open and closed solar coronal loops. In this Letter, we repor
The rapid damping of slow magnetoacoustic waves in the solar corona has been extensively studied in previous years. Most studies suggest that thermal conduction is a dominant contributor to this damping, albeit with a few exceptions. Employing extrem
A comprehensive study of the physical parameters of active region fan loops is presented using the observations recorded with the Interface Region Imaging Spectrometer (IRIS), the EUV Imaging Spectrometer (EIS) on-board Hinode and the Atmospheric Ima