ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Heisenberg antiferromagnetic chains with exchange and single--ion anisotropies

96   0   0.0 ( 0 )
 نشر من قبل Walter Selke
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), (10), and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.



قيم البحث

اقرأ أيضاً

Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and single-ion anisotropies in an external field are studied. Our findings confirm and refine recent results by Sengupta and Batista, Physical Review Letters 99, 217205 (2007) (2007), on the same model applying Monte Carlo techniques. In particular, we present evidence for two types of biconical (or supersolid) and for two types of spin-flop (or superfluid) structures. Basic features of the quantum phase diagram may be interpreted qualitatively in the framework of classical spin models.
431 - G. Bannasch , W. Selke 2009
We study classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term on simple cubic lattices in an external magnetic field using ground state considerations and extensive Monte Carlo simulations. In addition t o the antiferromagnetic phase field--induced spin--flop and non--collinear, biconical phases may occur. Phase diagrams and critical as well as multicritical phenomena are discussed. Results are compared to previous findings.
253 - G. Bannasch , W. Selke 2008
Classical Heisenberg antiferromagnets with uniaxial exchange anisotropy and a cubic anisotropy term in a field on simple cubic lattices are studied with the help of ground state considerations and extensive Monte Carlo simulations. Especially, we ana lyze the role of non-collinear structures of biconical type occurring in addition to the well-known antiferromagnetic and spin-flop structures. Pertinent phase diagrams are determined, and compared to previous findings.
Using (infinite) density matrix renormalization group techniques, ground state properties of antiferromagnetic S=1 Heisenberg spin chains with exchange and single-site anisotropies in an external field are studied. The phase diagram is known to displ ay a plenitude of interesting phases. We elucidate quantum phase transitions between the supersolid and spin-liquid as well as the spin-liquid and the ferromagnetic phases. Analyzing spin correlation functions in the spin-liquid phase, commensurate and (two distinct) incommensurate regions are identified.
A string of trapped ions at zero temperature exhibits a structural phase transition to a zigzag structure, tuned by reducing the transverse trap potential or the interparticle distance. The transition is driven by transverse, short wavelength vibrati onal modes. We argue that this is a quantum phase transition, which can be experimentally realized and probed. Indeed, by means of a mapping to the Ising model in a transverse field, we estimate the quantum critical point in terms of the system parameters, and find a finite, measurable deviation from the critical point predicted by the classical theory. A measurement procedure is suggested which can probe the effects of quantum fluctuations at criticality. These results can be extended to describe the transverse instability of ultracold polar molecules in a one dimensional optical lattice.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا