ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-perturbative renormalization of bilinear operators with dynamical overlap fermions

548   0   0.0 ( 0 )
 نشر من قبل Jun-Ichi Noaki
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Using the non-perturbative renormalization technique, we calculate the renormalization factors for quark bilinear operators made of overlap fermions on the lattice. The background gauge field is generated by the JLQCD and TWQCD collaborations including dynamical effects of two or 2+1 flavors of light quarks on a 16$^3times$32 or 16$^3times$48 lattice at lattice spacing around 0.1 fm. By reducing the quark mass close to the chiral limit, where the finite volume system enters the so-called $epsilon$-regime, the unwanted effect of spontaneous chiral symmetry breaking on the renormalization factors is suppressed. On the lattices in the conventional $p$-regime, this effect is precisely subtracted by separately calculating the contributions from the chiral condensate.



قيم البحث

اقرأ أيضاً

189 - Y. Aoki , P.A. Boyle , N.H. Christ 2007
We present a calculation of the renormalization coefficients of the quark bilinear operators and the K-Kbar mixing parameter B_K. The coefficients relating the bare lattice operators to those in the RI/MOM scheme are computed non-perturbatively and t hen matched perturbatively to the MSbar scheme. The coefficients are calculated on the RBC/UKQCD 2+1 flavor dynamical lattice configurations. Specifically we use a 16^3 x 32 lattice volume, the Iwasaki gauge action at beta=2.13 and domain wall fermions with L_s=16.
High luminosity accelerators have greatly increased the interest in semi-exclusive and exclusive reactions involving nucleons. The relevant theoretical information is contained in the nucleon wavefunction and can be parametrized by moments of the nuc leon distribution amplitudes, which in turn are linked to matrix elements of local three-quark operators. These can be calculated from first principles in lattice QCD. Defining an RI-MOM renormalization scheme, we renormalize three-quark operators corresponding to low moments non-perturbatively and take special care of the operator mixing. After performing a scheme matching and a conversion of the renormalization scale we quote our final results in the MSbar scheme at mu=2 GeV.
We perform dynamical QCD simulations with $n_f=2$ overlap fermions by hybrid Monte-Carlo method on $6^4$ to $8^3times 16$ lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector c hanges. We use this new method to determine the topological susceptibility at various quark masses.
163 - S. Borsanyi , Y. Delgado , S. Durr 2012
We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Ou r results are compared with staggered ones and a nice agreement is found.
The renormalization factors of local quark-bilinear operators are computed non-perturbatively for $N_f=3$ flavors of SLiNC fermions, with emphasis on the various procedures for the chiral and continuum extrapolations. The simulations are performed at a lattice spacing $a=0.074$ fm, and for five values of the pion mass in the range of 290-465 MeV, allowing a safe and stable chiral extrapolation. Emphasis is given in the subtraction of the well-known pion pole which affects the renormalization factor of the pseudoscalar current. We also compute the inverse propagator and the Greens functions of the local bilinears to one loop in perturbation theory. We investigate lattice artifacts by computing them perturbatively to second order as well as to all orders in the lattice spacing. The renormalization conditions are defined in the RI$$-MOM scheme, for both the perturbative and non-perturbative results. The renormalization factors, obtained at different values of the renormalization scale, are translated to the ${bar{rm MS}}$ scheme and are evolved perturbatively to 2 GeV. Any residual dependence on the initial renormalization scale is eliminated by an extrapolation to the continuum limit. We also study the various sources of systematic errors. Particular care is taken in correcting the non-perturbative estimates by subtracting lattice artifacts computed to one loop perturbation theory using the same action. We test two different methods, by subtracting either the ${cal O}(g^2,a^2)$ contributions, or the complete (all orders in $a$) one-loop lattice artifacts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا