ﻻ يوجد ملخص باللغة العربية
We have shown that alloying a noble metal (gold) with another metal (cadmium), which can contribute two electrons per atom to a free electron gas, can significantly improve the metals optical properties in certain wavelength ranges and make them worse in the other parts of the spectrum. In particular, in the gold-cadmium alloy we have demonstrated a significant expansion of the spectral range of metallic reflectance to shorter wavelengths. The experimental results and the predictions of the first principles theory demonstrate an opportunity for the improvement and optimization of low-loss metals for nanoplasmonic and metamaterials applications.
Plasmonics allows manipulating light at the nanoscale, but has limitations due to the static nature of nanostructures and lack of tuneability. We propose and theoretically analyse a room-temperature liquid-metal nanodroplet that changes its shape, an
Nanostructured plasmonic metal systems are known to enhance greatly variety of radiative and nonradiative optical processes, both linear and nonlinear, which are due to the interaction of an electron in a molecule or semiconductor with the enhanced l
All-dielectric nanoantennas have recently opened exciting opportunities for functional nanophotonics, owing to their strong optical resonances along with low material loss in the near-infrared range. Pushing these concepts to the visible range is hin
Engineering strong p-wave interactions between fermions is one of the challenges in modern quantum physics. Such interactions are responsible for a plethora of fascinating quantum phenomena such as topological quantum liquids and exotic superconducto
We demonstrate theoretically that electromagnetically induced transparency can be achieved in metamaterials, in which electromagnetic radiation is interacting resonantly with mesoscopic oscillators rather than with atoms. We describe novel metamateri