ترغب بنشر مسار تعليمي؟ اضغط هنا

Tracking azimuthons in nonlocal nonlinear media

156   0   0.0 ( 0 )
 نشر من قبل Stefan Skupin
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the formation of azimuthons, i.e., rotating spatial solitons, in media with nonlocal focusing nonlinearity. We show that whole families of these solutions can be found by considering internal modes of classical non-rotating stationary solutions, namely vortex solitons. This offers an exhaustive method to identify azimuthons in a given nonlocal medium. We demonstrate formation of azimuthons of different vorticities and explain their properties by considering the strongly nonlocal limit of accessible solitons.



قيم البحث

اقرأ أيضاً

We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced f inite correlation length of the noise in the transverse plane, by means of both numerical simulations and analytical estimates. In fact, solitons are practically insensitive to noise when the correlation length of the noise becomes comparable to the extent of the wave packet. We characterize soliton stability using two different criteria based on the evolution of the Hamiltonian of the soliton and its power. The first criterion allows us to estimate a time (or distance) over which the soliton preserves its form. The second criterion gives the life-time of the solitary wave packet in terms of its radiative power losses. We derive a simplified mean field approach which allows us to calculate the power loss analytically in the physically relevant case of weakly correlated noise, which in turn serves as a lower estimate of the life-time for correlated noise in general case.
We show that weakly guiding nonlinear waveguides support stable propagation of rotating spatial solitons (azimuthons). We investigate the role of waveguide symmetry on the soliton rotation. We find that azimuthons in circular waveguides always rotate rigidly during propagation and the analytically predicted rotation frequency is in excellent agreement with numerical simulations. On the other hand, azimuthons in square waveguides may experience spatial deformation during propagation. Moreover, we show that there is a critical value for the modulation depth of azimuthons above which solitons just wobble back and forth, and below which they rotate continuously. We explain these dynamics using the concept of energy difference between different orientations of the azimuthon.
We consider the step Riemann problem for the system of equations describing the propagation of a coherent light beam in nematic liquid crystals, which is a general system describing nonlinear wave propagation in a number of different physical applica tions. While the equation governing the light beam is of defocusing nonlinear Schrodinger equation type, the dispersive shock wave (DSW) generated from this initial condition has major differences from the standard DSW solution of the defocusing nonlinear Schrodinger equation. In particular, it is found that the DSW has positive polarity and generates resonant radiation which propagates ahead of it. Remarkably, the velocity of the lead soliton of the DSW is determined by the classical shock velocity. The solution for the radiative wavetrain is obtained using the WKB approximation. It is shown that for sufficiently small initial jumps the nematic DSW is asymptotically governed by a Korteweg-de Vries equation with fifth order dispersion, which explicitly shows the resonance generating the radiation ahead of the DSW. The constructed asymptotic theory is shown to be in good agreement with the results of direct numerical simulations.
We discuss spatial dynamics and collapse scenarios of localized waves governed by the nonlinear Schr{o}dinger equation with nonlocal nonlinearity. Firstly, we prove that for arbitrary nonsingular attractive nonlocal nonlinear interaction in arbitrary dimension collapse does not occur. Then we study in detail the effect of singular nonlocal kernels in arbitrary dimension using both, Lyapunoffs method and virial identities. We find that for for a one-dimensional case, i.e. for $n=1$, collapse cannot happen for nonlocal nonlinearity. On the other hand, for spatial dimension $ngeq2$ and singular kernel $sim 1/r^alpha$, no collapse takes place if $alpha<2$, whereas collapse is possible if $alphage2$. Self-similar solutions allow us to find an expression for the critical distance (or time) at which collapse should occur in the particular case of $sim 1/r^2$ kernels. Moreover, different evolution scenarios for the three dimensional physically relevant case of Bose Einstein condensate are studied numerically for both, the ground state and a higher order toroidal state with and without an additional local repulsive nonlinear interaction. In particular, we show that presence of an additional local repulsive term can prevent collapse in those cases.
Shallow water wave phenomena find their analogue in optics through a nonlocal nonlinear Schrodinger (NLS) model in $(2+1)$-dimensions. We identify an analogue of surface tension in optics, namely a single parameter depending on the degree of nonlocal ity, which changes the sign of dispersion, much like surface tension does in the shallow water wave problem. Using multiscale expansions, we reduce the NLS model to a Kadomtsev-Petviashvilli (KP) equation, which is of the KPII (KPI) type, for strong (weak) nonlocality.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا