ترغب بنشر مسار تعليمي؟ اضغط هنا

On symmetrization of 6j-symbols and Levin-Wen Hamiltonian

499   0   0.0 ( 0 )
 نشر من قبل Seung-Moon Hong Mr
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Seung-Moon Hong




اسأل ChatGPT حول البحث

It is known that every ribbon category with unimodality allows symmetrized $6j$-symbols with full tetrahedral symmetries while a spherical category does not in general. We give an explicit counterexample for this, namely the category $mathcal{E}$. We define the mirror conjugate symmetry of $6j$-symbols instead and show that $6j$-symbols of any unitary spherical category can be normalized to have this property. As an application, we discuss an exactly soluble model on a honeycomb lattice. We prove that the Levin-Wen Hamiltonian is exactly soluble and hermitian on a unitary spherical category.



قيم البحث

اقرأ أيضاً

198 - J. Vidal 2021
Using a description of the Levin-Wen model excitations in terms of Wilson lines, we compute the degeneracy of the energy levels for any input anyon theory and for any trivalent graph embedded on any (orientable) compact surface. This result allows on e to obtain the finite-size and finite-temperature partition function and to show that there are no thermal phase transitions.
We study the $6j$ symbol for the conformal group, and its appearance in three seemingly unrelated contexts: the SYK model, conformal representation theory, and perturbative amplitudes in AdS. The contribution of the planar Feynman diagrams to the thr ee-point function of the bilinear singlets in SYK is shown to be a $6j$ symbol. We generalize the computation of these and other Feynman diagrams to $d$ dimensions. The $6j$ symbol can be viewed as the crossing kernel for conformal partial waves, which may be computed using the Lorentzian inversion formula. We provide closed-form expressions for $6j$ symbols in $d=1,2,4$. In AdS, we show that the $6j$ symbol is the Lorentzian inversion of a crossing-symmetric tree-level exchange amplitude, thus efficiently packaging the double-trace OPE data. Finally, we consider one-loop diagrams in AdS with internal scalars and external spinning operators, and show that the triangle diagram is a $6j$ symbol, while one-loop $n$-gon diagrams are built out of $6j$ symbols.
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for t his object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
It has been conjectured that every $(2+1)$-TQFT is a Chern-Simons-Witten (CSW) theory labelled by a pair $(G,lambda)$, where $G$ is a compact Lie group, and $lambda in H^4(BG;Z)$ a cohomology class. We study two TQFTs constructed from Jones subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the $E_6$ subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair $(G,lambda)$. The cases that are constructed mathematically include: 1. $G$ is a finite group--the Dijkgraaf-Witten TQFTs; 2. $G$ is torus $T^n$; 3. $G$ is a connected semi-simple Lie group--the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half $E_6$ TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.
This is an auxiliary note to [12]. To be precise, here we have gathered the proofs of all the statements in [12, Section 5] that happen to have points of contact with techniques recently developed in Chousionis-Pratt [5] and Chunaev [6].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا