ترغب بنشر مسار تعليمي؟ اضغط هنا

A multideterminant assessment of mean field methods for the description of electron transfer in the weak coupling regime

42   0   0.0 ( 0 )
 نشر من قبل Robert Stadler
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Multideterminant calculations have been performed on model systems to emphasize the role of many-body effects in the general description of charge quantization experiments. We show numerically and derive analytically that a closed-shell ansatz, the usual ingredient of mean-field methods, does not properly describe the step-like electron transfer characteristic in weakly coupled systems. With the multideterminant results as a benchmark, we have evaluated the performance of common ab initio mean field techniques, such as Hartree Fock (HF) and Density Functional Theory (DFT) with local and hybrid exchange correlation functionals, with a special focus on spin-polarization effects. For HF and hybrid DFT, a qualitatively correct open-shell solution with distinct steps in the electron transfer behaviour can be obtained with a spin-unrestricted (i.e., spin-polarized) ansatz though this solution differs quantitatively from the multideterminant reference. We also discuss the relationship between the electronic eigenvalue gap and the onset of charge transfer for both HF and DFT and relate our findings to recently proposed practical schemes for calculating the addition energies in the Coulomb blockade regime for single molecule junctions from closed-shell DFT within the local density approximation.

قيم البحث

اقرأ أيضاً

70 - A. Ueda , Y. Utsumi , Y. Tokura 2016
The coupling of the charge carriers passing through a molecule bridging two bulky conductors with local vibrational modes of the molecule, gives rise to distinct features in the electronic transport properties on one hand, and to nonequilibrium featu res in the vibrations properties, e.g., their population, on the other. Here we explore theoretically a generic model for a molecular junction biased by an arbitrary dc voltage in the weak-coupling regime. We analyze the signature of the electron-vibration interaction on the full-counting statistics of the current fluctuations (i.e., the cumulant generating-function of the current correlations), we give a detailed account of the response to an ac field exerted on the junction (on top of the dc bias voltage), we study the nonequilibrium distribution of the vibrational modes and the fluctuations they cause in the displacement of the molecule center of mass. The calculations use the technique of nonequilibrium Greens functions, and treat the electron-vibration coupling in perturbation theory, within the random-phase approximation when required.
The dynamical Casimir effect (DCE) manifests itself in the ultrastrong matter-field coupling (USC) regime, as a consequence of the nonadiabatic change of some parameters of a system. We show that the DCE is a fundamental limitation for standard quant um protocols based on quantum Rabi oscillations, implying that new schemes are required to implement high-fidelity ultrafast quantum gates. Our results are illustrated by means of a paradigmatic quantum communication protocol, i.e., quantum state transfer.
We study the decoherence of a superconducting qubit due to the dispersive coupling to a damped harmonic oscillator. We go beyond the weak qubit-oscillator coupling, which we associate with a phase Purcell effect, and enter into a strong coupling regi me, with qualitatively different behavior of the dephasing rate. We identify and give a physicaly intuitive discussion of both decoherence mechanisms. Our results can be applied, with small adaptations, to a large variety of other physical systems, e. g. trapped ions and cavity QED, boosting theoretical and experimental decoherence studies.
402 - D. Lacroix , M. Assie , S. Ayik 2009
Microscopic theories beyond mean-field are developed to include pairing, in-medium nucleon-nucleon collisions as well as effects of initial fluctuations of one-body observables on nuclear dynamics. These theories are applied to nuclear reactions. The role of pairing on nuclear break-up is discussed. By including the effect of zero point motion of collective variables through a stochastic mean-field theory, not only average evolution of one-body observables are properly described but also fluctuations. Diffusion coefficients in fusion as well as mass distributions in transfer reactions are estimated.
We examine effects of inversion asymmetry of a GaAs/Al0.3Ga0.7As quantum well (QW) on electron-nuclear spin coupling in the fractional quantum Hall (QH) regime. Increasing the QW potential asymmetry at a fixed Landau-level filling factor (nu) with ga te voltages suppresses the current-induced nuclear spin polarization in the nu = 2/3 Ising QH ferromagnet, while it significantly enhances the nuclear spin relaxation at general nu. These findings suggest that mixing of different spin states due to the Rashba spin-orbit interaction strongly affects the electron-nuclear spin coupling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا