ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ehrenfest theorem of quantum mechanics

148   0   0.0 ( 0 )
 نشر من قبل Gero Friesecke
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We give a mathematically rigorous derivation of Ehrenfests equations for the evolution of position and momentum expectation values, under general and natural assumptions which include atomic and molecular Hamiltonians with Coulomb interactions.



قيم البحث

اقرأ أيضاً

We characterize point transformations in quantum mechanics from the mathematical viewpoint. To conclude that the canonical variables given by each point transformation in quantum mechanics correctly describe the extended point transformation, we show that they are all selfadjoint operators in $L^2(mathbb{R}^n)$ and that the continuous spectrum of each coincides with $mathbb{R}$. They are also shown to satisfy the canonical commutation relations.
Using the Trotter-Kato theorem we prove the convergence of the unitary dynamics generated by an increasingly singular Hamiltonian in the case of a single field coupling. The limit dynamics is a quantum stochastic evolution of Hudson-Parthasarathy typ e, and we establish in the process a graph limit convergence of the pre-limit Hamiltonian operators to the Chebotarev-Gregoratti-von Waldenfels Hamiltonian generating the quantum Ito evolution.
The concept of a classical player, corresponding to a classical random variable, is extended to include quantum random variables in the form of self adjoint operators on infinite dimensional Hilbert space. A quantum version of Von Neumanns Minimax th eorem for infinite dimensional (or continuous) games is proved.
In the present paper, we propose a refinement for the notion of quantum Markov states (QMS) on trees. A structure theorem for QMS on general trees is proved. We notice that any restriction of QMS in the sense of Ref. cite{AccFid03} is not necessarily to be a QMS. It turns out that localized QMS has the mentioned property which is called textit{sub-Markov states}, this allows us to characterize translation invariant QMS on regular trees.
The formulation of Geometric Quantization contains several axioms and assumptions. We show that for real polarizations we can generalize the standard geometric quantization procedure by introducing an arbitrary connection on the polarization bundle. The existence of reducible quantum structures leads to considering the class of Liouville symplectic manifolds. Our main application of this modified geometric quantization scheme is to Quantum Mechanics on Riemannian manifolds. With this method we obtain an energy operator without the scalar curvature term that appears in the standard formulation, thus agreeing with the usual expression found in the Physics literature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا