ترغب بنشر مسار تعليمي؟ اضغط هنا

MOIRCS Deep Survey IV: Evolution of Galaxy Stellar Mass Function Back to z ~ 3

110   0   0.0 ( 0 )
 نشر من قبل Masaru Kajisawa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use very deep near-infrared (NIR) imaging data obtained in MOIRCS Deep Survey (MODS) to investigate the evolution of the galaxy stellar mass function back to z~3. The MODS data reach J=24.2, H=23.1, K=23.1 (5sigma, Vega magnitude) over 103 arcmin^2 (wide) and J=25.1, H=23.7, K=24.1 over 28 arcmin^2 (deep) in the GOODS-North region. The wide and very deep NIR data allow us to measure the number density of galaxies down to low stellar mass (10^9-10^10 Msun) even at high redshift with high statistical accuracy. The normalization of the mass function decreases with redshift and the integrated stellar mass density becomes ~ 8-18% of the local value at z~2 and ~ 4-9% at z~3, which are consistent with results of previous studies in general fields. Furthermore, we found that the low-mass slope becomes steeper with redshift from alpha ~- 1.3 at z~1 to alpha ~- 1.6 at z~3, and that the evolution of the number density of low-mass (10^9-10^10 Msun) galaxies is weaker than that of M* (~10^11 Msun) galaxies. This indicates that the contribution of low-mass galaxies to the total stellar mass density has been significant at high redshift. The steepening of the low-mass slope with redshift is opposite trend expected from the stellar mass dependence of the specific star formation rate reported in previous studies. The present result suggests that the hierarchical merging process overwhelmed the effect of the stellar mass growth by star formation and was very important for the stellar mass assembly of these galaxies at 1<~z<~3.


قيم البحث

اقرأ أيضاً

We have analysed a sample of 1292 4.5 micron-selected galaxies at z>=3, over 0.6 square degrees of the UKIRT Infrared Deep Survey (UKIDSS) Ultra Deep Survey (UDS). Using photometry from the U band through 4.5 microns, we have obtained photometric red shifts and derived stellar masses for our sources. Only two of our galaxies potentially lie at z>5. We have studied the galaxy stellar mass function at 3<=z<5, based on the 1213 galaxies in our catalogue with [4.5]<= 24.0. We find that: i) the number density of M > 10^11 Msun galaxies increased by a factor > 10 between z=5 and 3, indicating that the assembly rate of these galaxies proceeded > 20 times faster at these redshifts than at 0<z<2; ii) the Schechter function slope alpha is significantly steeper than that displayed by the local stellar mass function, which is both a consequence of the steeper faint end and the absence of a pure exponential decline at the high-mass end; iii) the evolution of the comoving stellar mass density from z=0 to 5 can be modelled as log10 (rho_M) =-(0.05 +/- 0.09) z^2 - (0.22 -/+ 0.32) z + 8.69. At 3<=z<4, more than 30% of the M > 10^11 Msun galaxies would be missed by optical surveys with R<27 or z<26. Thus, our study demonstrates the importance of deep mid-IR surveys over large areas to perform a complete census of massive galaxies at high z and trace the early stages of massive galaxy assembly.
We derive stellar masses from SED fitting to rest-frame optical and UV fluxes for 401 star-forming galaxies at z 4, 5, and 6 from Hubble-WFC3/IR observations of the ERS combined with the deep GOODS-S Spitzer/IRAC data (and include a previously-publis hed z 7 sample). A mass-luminosity relation with strongly luminosity-dependent M/Luv ratios is found for the largest sample (299 galaxies) at z 4. The relation M propto L_{UV,1500}^(1.7+/-0.2) has a well-determined intrinsic sample variance of 0.5 dex. This relation is also consistent with the more limited samples at z 5-7. This z 4 mass-luminosity relation, and the well-established faint UV luminosity functions at z 4-7, are used to derive galaxy mass functions (MF) to masses M~10^8 at z 4-7. A bootstap approach is used to derive the MFs to account for the large scatter in the M--Luv relation and the luminosity function uncertainties, along with an analytical crosscheck. The MFs are also corrected for the effects of incompleteness. The incompleteness-corrected MFs are steeper than previously found, with slopes alpha_M-1.4 to -1.6 at low masses. These slopes are, however, still substantially flatter than the MFs obtained from recent hydrodynamical simulations. We use these MFs to estimate the stellar mass density (SMD) of the universe to a fixed M_{UV,AB}<-18 as a function of redshift and find a SMD growth propto(1+z)^{-3.4 +/-0.8} from z 7 to z 4. We also derive the SMD from the completeness-corrected MFs to a mass limit M~10^{8} Msun. Such completeness-corrected MFs and the derived SMDs will be particularly important for model comparisons as future MFs reach to lower masses.
We investigate rest-frame near-infrared (NIR) morphologies of a sample of 139 galaxies with M_{s} >= 1 x 10^{10} M_{sun} at z=0.8-1.2 in the GOODS-North field using our deep NIR imaging data (MOIRCS Deep Survey, MODS). We focus on Luminous Infrared G alaxies (LIRGs), which dominate high star formation rate (SFR) density at z~1, in the sample identified by cross-correlating with the Spitzer/MIPS 24um source catalog. We perform two-dimensional light profile fitting of the z~1 galaxies in the Ks-band (rest-frame J-band) with a single component Sersic model. We find that at z~1, ~90% of LIRGs have low Sersic indices (n<2.5, similar to disk-like galaxies) in the Ks-band, and those disk-like LIRGs consist of ~60% of the whole disk-like sample above M_{s} >= 3 x 10^{10} M_{sun}. The z~1 disk-like LIRGs are comparable or ~20% small at a maximum in size compared to local disk-like galaxies in the same stellar mass range. If we examine rest-frame UV-optical morphologies using the HST/ACS images, the rest-frame B-band sizes of the z~1 disk-like galaxies are comparable to those of the local disk-like galaxies as reported by previous studies on size evolution of disk-like galaxies in the rest-frame optical band. Measuring color gradients (galaxy sizes as a function of wavelength) of the z~1 and local disk-like galaxies, we find that the z~1 disk-like galaxies have 3-5 times steeper color gradient than the local ones. Our results indicate that (i) more than a half of relatively massive disk-like galaxies at z~1 are in violent star formation epochs observed as LIRGs, and also (ii) most of those LIRGs are constructing their fundamental disk structure vigorously. The high SFR density in the universe at z~1 may be dominated by such star formation in disk region in massive galaxies.
82 - S. Giodini , D.Pierini 2011
We study the stellar mass distribution for galaxies in 160 X-ray detected groups of 10^13<Log(M_200/M_sun)<2x10^14 and compare it with that of galaxies in the field, to investigate the action of environment on the build up of the stellar mass. We hig hlight differences in the build up of the passive population in the field, which imprint features in the distribution of stellar mass of passive galaxies at Log(M/M_sun)< 10.5. The gradual diminishing of the effect when moving to groups of increasing total masses indicates that the growing influence of the environment in bound structures is responsible for the build up of a quenched component at Log(M/M_sun)< 10.5. Differently, the stellar mass distribution of star forming galaxies is similar in shape in all the environments, and can be described by a single Schechter function both in groups and in the field. Little evolution is seen up to redshift 1. Nevertheless at z=0.2-0.4 groups with M_200<6x10^13 Msun (low mass groups) tend to have a characteristic mass for star forming galaxies which is 50% higher than in higher mass groups; we interpret it as a reduced action of environmental processes in such systems. Furthermore we analyse the distribution of sSFR--Log(M) in groups and in the field, and find that groups show on average a lower sSFR (by ~0.2 dex) at z<0.8. Accordingly, we find that the fraction of star forming galaxies is increasing with redshift in all environments, but at a faster pace in the denser ones. Finally our analysis highlights that low mass groups have a higher fraction (by 50%) of the stellar mass locked in star forming galaxies than higher mass systems (i.e. 2/3 of their stellar mass).
We present a new analysis of stellar mass functions (MF) in the COSMOS field to fainter limits than has been previously probed to z~1. Neither the total nor the passive or star-forming MF can be well fit with a single Schechter function once one prob es below 3e9 Msun. We observe a dip or plateau at masses ~1e10 Msun, and an upturn towards a steep faint-end slope of -1.7 at lower mass at any z<1. This bimodal nature of the MF is not solely a result of the blue/red dichotomy. The blue MF is by itself bimodal at z~1. This suggests a new dichotomy in galaxy formation that predates the appearance of the red sequence. We propose two interpretations for this bimodality. If the gas fraction increases towards lower mass, galaxies with M_baryon~1e10 Msun would shift to lower stellar masses, creating the observed dip. This would indicate a change in star formation efficiency, perhaps linked to supernovae feedback becoming much more efficient. Therefore, we investigate whether the dip is present in the baryonic (stars+gas) MF. Alternatively, the dip could be created by an enhancement of the galaxy assembly rate at ~1e11 Msun, a phenomenon that naturally arises if the baryon fraction peaks at M_halo ~1e12 Msun. In this scenario, galaxies occupying the bump around M* would be identified with central galaxies and the second fainter component having a steep faint-end slope with satellites. While the dip is apparent in the total MF at any z, it appears to shift from the blue to red population, likely as a result of transforming high-mass blue galaxies into red ones. At the same time, we detect a drastic upturn in the number of low-mass red galaxies. Their increase with time reflects a decrease in the number of blue systems and so we tentatively associate them with satellite dwarf galaxies that have undergone quenching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا