ترغب بنشر مسار تعليمي؟ اضغط هنا

Testing the starburst/AGN connection with SWIRE X-ray/70 micron sources

87   0   0.0 ( 0 )
 نشر من قبل Markos Trichas
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore the nature of X-ray sources with 70 micron counterparts selected in the SWIRE fields ELAIS-N1, Lockman Hole and Chandra Deep Field South, for which Chandra X-ray data are available. A total of 28 X-ray/70 micron sources in the redshift interval 0.5<z<1.3 are selected. The X-ray luminosities and the shape of the X-ray spectra show that these sources are AGN. Modelling of the optical to far-infrared Spectral Energy Distribution indicates that most of them (27/28) have a strong starburst component (>50 solar masses per year) that dominates in the infrared. It is found that the X-ray and infrared luminosities of the sample sources are broadly correlated, consistent with a link between AGN activity and star-formation. Contrary to the predictions of some models for the co-evolution of AGN and galaxies, the X-ray/70 micron sources in the sample are not more obscured at X-ray wavelengths compared to the overall X-ray population. It is also found that the X-ray/70 micron sources have lower specific star-formation rates compared to the general 70 micron population, consistent with AGN feedback moderating the star-formation in the host galaxies.

قيم البحث

اقرأ أيضاً

The mass of super massive black holes at the centre of galaxies is tightly correlated with the mass of the galaxy bulges which host them. This observed correlation implies a mechanism of joint growth, but the precise physical processes responsible ar e a matter of some debate. Here we report on the growth of black holes in 400 local galactic bulges which have experienced a strong burst of star formation in the past 600Myr. The black holes in our sample have typical masses of 10^6.5-10^7.5 solar masses, and the active nuclei have bolometric luminosities of order 10^42-10^44erg/s. We combine stellar continuum indices with H-alpha luminosities to measure a decay timescale of ~300Myr for the decline in star formation after a starburst. During the first 600Myr after a starburst, the black holes in our sample increase their mass by on-average 5% and the total mass of stars formed is about 1000 times the total mass accreted onto the black hole. This ratio is similar to the ratio of stellar to black hole mass observed in present-day bulges. We find that the average rate of accretion of matter onto the black hole rises steeply roughly 250Myr after the onset of the starburst. We show that our results are consistent with a simple model in which 0.5% of the mass lost by intermediate mass stars in the bulge is accreted by the black hole, but with a suppression in the efficiency of black hole growth at early times plausibly caused by supernova feedback, which is stronger at earlier times. We suggest this picture may be more generally applicable to black hole growth, and could help explain the strong correlation between bulge and black hole mass.
246 - G. Lanzuisi 2009
Recent works have suggested that selection criteria based on MIR colors can be used to reveal a population of dust-enshrouded, extremely luminous quasars at z>1. However the X-ray spectral properties of these intriguing sources still remain largely u nexplored. We report on an X-ray spectroscopic study of a sample of 44 very bright mid-IR galaxies with extreme mid-IR to optical flux ratios (MIR/O>2000). The X-ray coverage of the sample is highly inhomogeneous (from snap-shot 5 ks Chandra observations to medium-deep XMM exposures of 70 ks) and, consequently, a sizable fraction of them (~43%) remains undetected in the 0.5-10 keV band. The vast majority (95%) of the detected sources (23) show an absorption column density NH>10e22 cm-2 and, remarkably, we also find that 50% of them can be classified as Type 2 quasars on the basis of their absorption properties and X-ray luminosity. Moreover, most of the X-ray undetected sources show extreme mid-IR colors, consistent with being luminous AGN-powered objects, suggesting they might host heavily obscured (possibly Compton-thick) quasars in X-rays. This demonstrates that our selection criteria applied to a wide area survey is very efficient in finding a large number of Type 2 quasars at z > 1. The existence of this class of very powerful, obscured quasars at high z could have important implications in the context of the formation and cosmological evolution of accreting supermassive black holes and their host galaxies.
Spitzer/IRS has revealed many sources with very deep Si features at 9.7micron (tau>1). We set out to investigate whether a strong Si absorption feature is a good indicator for the presence of a heavily obscured AGN. We compile X-ray spectroscopic obs ervations available in the literature on the optically-thick,tau(9.7)>1 sources from the IRAS Seyfert sample. We find that the majority of the high-tau optically confirmed Seyferts (6/9) in this sample are probably CT. Thus we provide direct evidence for a connection between mid-IR optically-thick galaxies and CT AGN, with the success rate being close to 70% in the local Universe. This is at least comparable, if not better, than other rates obtained with photometric information in the mid to far-IR, or even mid-IR to Xray. However, this technique cannot provide complete CT AGN samples,ie there are many CT AGN which do not show significant Si absorption, with the most notable example being N1068. Having assessed the validity of the high 9.7micron technique locally, we attempt to construct a sample of candidate CT AGN at higher redshifts. We compile a sample of 7 high-tau sources in the GOODS and 5 in the Spitzer FLS. All these have been selected to have no PAH features EW(6.2)<0.3 in order to maximize the probability that they are AGN. 6 out of 7 sources in the GOODS have been detected in X-rays, while for the five FLS sources only X-ray flux upper limits are available. The high X-ray luminosities of the detected GOODS sources corroborates that these are AGN. For FLS, ancillary optical spectroscopy reveals hidden nuclei in two more sources. SED fitting can support the presence of an AGN in the vast majority of sources. We cannot derive useful X-ray spectroscopy constraints on whether these are CT. However, the low LX/L6 ratios, suggest that at least 4 out of the 6 detected sources in GOODS may be associated with CT AGN.
58 - D. Weedman 2006
Spectra have been obtained with the Infrared Spectrograph (IRS) on the Spitzer Space Telescope for 20 sources in the Lockman Hole field of the SWIRE survey. The sample is divided between sources with indicators of an obscured AGN, based primarily on X-ray detections of optically-faint sources, and sources with indicators of a starburst, based on optical and near-infrared spectral energy distributions (SEDs) which show a luminosity peak from stellar photospheric emission. Ten of the 11 AGN sources have IRS spectra which show silicate absorption or are power laws; only one AGN source shows PAH emission features. All 9 of the sources showing starburst SEDs in the near-infrared show PAH emission features in the IRS spectra. Redshifts are determined from the IRS spectra for all 9 starbursts (1.0 < z < 1.9) and 8 of the 11 AGN (0.6 < z < 2.5). Classification as AGN because of an X-ray detection, the classification as AGN or starburst derived from the photometric SED, and the IRS spectroscopic classification as AGN (silicate absorption) or starburst (PAH emission) are all consistent in 18 of 20 sources. The surface density for starbursts which are most luminous in the mid-infrared is less than that for the most luminous AGN within the redshift interval 1.7 < z < 1.9. This result implies that mid-infrared source counts at high redshift are dominated by AGN for f(24micron) > 1.0 mJy.
79 - M.Guainazzi 2009
We present a deep (~5.8 days) 0.3-2 keV high-resolution spectrum of NGC1365, collected with the reflection grating spectrometer (RGS) on board XMM-Newton. The spectrum is dominated by strong recombination lines of He- and H-like transitions from carb on to silicon, as well as by L transitions from FeXVII. The continuum is strong, especially in the 10 to 20 Angstrom, range. Formal fits require two optically thin, collisionally ionised plasma components, with temperatures ~300 and ~640 eV. However, they leave the bulk of the forbidden components of the He-alpha OVII and NVI triplets unaccounted for. These features can be explained as being produced by photoionised gas. NGC1365 is therefore the first obscured AGN, whose high-resolution X-ray spectrum requires both collisional ionisation and photoionisation. The relative weakness of photoionisation does not stem from the intrinsic weakness of its AGN, whose X-ray luminosity is ~10^{42} erg/s. We suggest that it may instead come from the line-of-sight from the active nucleus to the NLR being blocked by optically thick matter in the broad line region, at the same time responsible for the large observed variation of the column density obscuring the X-ray active nucleus. Alternatively, NGC1365 could host a remarkably luminous nuclear starburst when compared to the AGN accretion power [abriged].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا