ترغب بنشر مسار تعليمي؟ اضغط هنا

Galaxies-Intergalactic Medium Interaction Calculation --I. Galaxy formation as a function of large-scale environment

105   0   0.0 ( 0 )
 نشر من قبل Robert Crain
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] We present the first results of hydrodynamical simulations that follow the formation of galaxies to z=0 in spherical regions of radius ~20 Mpc/h drawn from the Millennium Simulation. The regions have overdensities that deviate by (-2, -1, 0, +1, +2)sigma from the cosmic mean, where sigma is the rms mass fluctuation on a scale of ~20Mpc/h at z=1.5. The simulations have mass resolution of up to 10^6 Msun/h, cover the entire range of large-scale environments and allow extrapolation of statistics to the entire 500 (Mpc/h)^3 Millennium volume. They include gas cooling, photoheating from an ionising background, SNe feedback and winds, but no AGN. We find that the specific SFR density at z <~ 10 varies systematically from region to region by up to an order of magnitude, but the global value, averaged over all volumes, reproduces observational data. Massive, compact galaxies, similar to those observed in the GOODS fields, form in the overdense regions as early as z=6, but do not appear in the underdense regions until z~3. These environmental variations are not caused by a dependence of the star formation properties on environment, but rather by a strong variation of the halo mass function from one environment to another, with more massive haloes forming preferentially in the denser regions. At all epochs, stars form most efficiently in haloes of circular velocity ~ 250 km/s. However, the star formation history exhibits a form of downsizing (even in the absence of AGN): the stars comprising massive galaxies at z=0 have mostly formed by z=1-2, whilst those comprising smaller galaxies typically form at later times. However, additional feedback is required to limit star formation in massive galaxies at late times.



قيم البحث

اقرأ أيضاً

We report on two quantitative, morphological estimators of the filamentary structure of the Cosmic Web, the so-called global and local skeletons. The first, based on a global study of the matter density gradient flow, allows us to study the connectiv ity between a density peak and its surroundings, with direct relevance to the anisotropic accretion via cold flows on galactic halos. From the second, based on a local constraint equation involving the derivatives of the field, we can derive predictions for powerful statistics, such as the differential length and the relative saddle to extrema counts of the Cosmic web as a function of density threshold (with application to percolation of structures and connectivity), as well as a theoretical framework to study their cosmic evolution through the onset of gravity-induced non-linearities.
We present an analysis of star formation and nuclear activity of about 28000 galaxies in a volume-limited sample taken from SDSS DR4 low-redshift catalogue (LRC) taken from the New York University Value Added Galaxy Catalogue (NYU-VAGC) of Blanton et al. 2005, with 0.005<z<0.037, ~90% complete to M_r=-18.0. We find that in high-density regions ~70 per cent of galaxies are passively evolving independent of luminosity. In the rarefied field, however, the fraction of passively evolving galaxies is a strong function of luminosity, dropping from 50 per cent for Mr <~ -21 to zero by Mr ~ -18. Moreover the few passively evolving dwarf galaxies in field regions appear as satellites to bright (>~ L*) galaxies. Moreover the fraction of galaxies with the optical signatures of an active galactic nucleus (AGN) decreases steadily from ~50% at Mr~-21 to ~0 per cent by Mr~-18 closely mirroring the luminosity dependence of the passive galaxy fraction in low-density environments (see fig. 1 continuous lines). This result reflects the increasing importance of AGN feedback with galaxy mass for their evolution, such that the star formation histories of massive galaxies are primarily determined by their past merger history.
We present and test a framework that models the three-dimensional distribution of mass in the Universe as a function of cosmological and astrophysical parameters. Our approach combines two different techniques: a rescaling algorithm that modifies the cosmology of gravity-only N-body simulations, and a baryonification algorithm which mimics the effects of astrophysical processes induced by baryons, such as star formation and AGN feedback. We show how this approach can accurately reproduce the effects of baryons on the matter power spectrum of various state-of-the-art hydro-dynamical simulations (EAGLE, Illustris, Illustris-TNG, Horizon-AGN, and OWLS,Cosmo-OWLS and BAHAMAS), to percent level from very large down to small, highly nonlinear scales, k= 5 h/Mpc, and from z=0 up to z=2. We highlight that, thanks to the heavy optimisation of the algorithms, we can obtain these predictions for arbitrary baryonic models and cosmology (including massive neutrinos and dynamical dark energy models) with an almost negligible CPU cost. Therefore, this approach is efficient enough for cosmological data analyses. With these tools in hand we explore the degeneracies between cosmological and astrophysical parameters in the nonlinear mass power spectrum. Our findings suggest that after marginalising over baryonic physics, cosmological constraints inferred from weak gravitational lensing should be moderately degraded.
We aim to identify and quantify the effects of the satellite distribution around a sample of galaxies in the Catalogue of Isolated Galaxies (CIG), as well as the effects of the Large Scale Structure (LSS) using the SDSS-DR9. To recover the physically bound galaxies we focus on the satellites which are within the escape speed of each CIG galaxy. We also propose a more conservative method using the stacked Gaussian distribution of the velocity difference of the neighbours. The tidal strengths affecting the primary galaxy are estimated to quantify the effects of the local and LSS environments. We also define the projected number density parameter at the 5$^{rm th}$ nearest neighbour to characterise the LSS around the CIG galaxies. Out of the 386 CIG galaxies considered in this study, at least 340 (88% of the sample) have no physically linked satellite. Out of the 386 CIG galaxies, 327 (85% of the sample) have no physical companion within a projected distance of 0.3 Mpc. The CIG galaxies are distributed following the LSS of the local Universe, although presenting a large heterogeneity in their degree of connection with it. A clear segregation appears between early-type CIG galaxies with companions and isolated late-type CIG galaxies. Isolated galaxies are in general bluer, with likely younger stellar populations and rather high star formation with respect to older, redder CIG galaxies with companions. Reciprocally, the satellites are redder and with an older stellar populations around massive early-type CIG galaxies, while they have a younger stellar content around massive late-type CIG galaxies. This suggests that the CIG is composed of a heterogeneous population of galaxies, sampling from old to more recent, dynamical systems of galaxies.
A study of the IGM metal enrichment using a series of SPH simulations is presented, employing metal cooling and turbulent diffusion of metals and thermal energy. An adiabatic feedback mechanism was adopted where gas cooling was prevented to generate galactic winds without explicit wind particles. The simulations produced a cosmic star formation history (SFH) that is broadly consistent with observations until z $sim$ 0.5, and a steady evolution of the universal neutral hydrogen fraction ($Omega_{rm H I}$). At z=0, about 40% of the baryons are in the warm-hot intergalactic medium (WHIM), but most metals (80%-90%) are locked in stars. At higher z the proportion of metals in the IGM is higher due to more efficient loss from galaxies. The IGM metals primarily reside in the WHIM throughout cosmic history. The metallicity evolution of the gas inside galaxies is broadly consistent with observations, but the diffuse IGM is under enriched at z $sim$ 2.5. Galactic winds most efficiently enrich the IGM for halos in the intermediate mass range $10^{10}$M$_{sun}$ - $10^{11}$ M$_{sun}$. At the low mass end gas is prevented from accreting onto halos and has very low metallicities. At the high mass end, the fraction of halo baryons escaped as winds declines along with the decline of stellar mass fraction of the galaxies. This is likely because of the decrease in star formation activity and in wind escape efficiency. Metals enhance cooling which allows WHIM gas to cool onto galaxies and increases star formation. Metal diffusion allows winds to mix prior to escape, decreasing the IGM metal content in favour of gas within galactic halos and star forming gas. Diffusion significantly increases the amount of gas with low metallicities and changes the density-metallicity relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا