ترغب بنشر مسار تعليمي؟ اضغط هنا

Optical conductivity from local anharmonic phonons

121   0   0.0 ( 0 )
 نشر من قبل Tatsuya Mori
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently there has been paid much attention to phenomena caused by local anharmonic vibrations of the guest ions encapsulated in polyhedral cages of materials such as pyrochlore oxides, filled skutterdites and clathrates. We theoretically investigate the optical conductivity solely due to these so-called rattling phonons in a one-dimensional anharmonic potential model. The dipole interaction of the guest ions with electric fields induces excitations expressed as transitions among vibrational states with non-equally spaced energies, resulting in a natural line broadening and a shift of the peak frequency as anharmonic effects. In the case of a single well potential, a softening of the peak frequency and an asymmetric narrowing of the line width with decreasing temperature are understood as a shift of the spectral weight to lower level transitions. On the other hand, the case of a double minima potential leads to a multi-splitting of a spectral peak in the conductivity spectrum with decreasing temperature.

قيم البحث

اقرأ أيضاً

A quantum Langevin model, similar to models used recently for optomechanics, was used to predict intermodulation phonon sidebands (IPS). Ab initio calculations of anharmonic phonons in rocksalt NaBr showed these spectral features as many-body effects . Modern inelastic neutron scattering measurements on a crystal of NaBr at 300K revealed diffuse intensity at high phonon energy from a predicted upper IPS. The transverse optical (TO) part of the new features originates from phonon intermodulation between the transverse acoustic (TA) and TO phonons. The longitudinal optical (LO) spectral features originate from three-phonon coupling between the TA modes and the TO lattice modes. The partner lower IPS proves to be an intrinsic localized mode. Interactions with the thermal bath broaden and redistribute the spectral weight of the IPS pair. These sidebands are a probe of anharmonicity and quantum noise, which originate from interactions between the phonons in NaBr.
The phonon density of states (DOS) and magnetic excitation spectrum of polycrystalline BiFeO$_3$ were measured for temperatures $200 leq T leq 750,$K, using inelastic neutron scattering (INS). Our results indicate that the magnetic spectrum of BiFeO$ _3$ closely resembles that of similar Fe perovskites, such as LaFeO$_3$, despite the cycloid modulation in BiFeO$_3$. We do not find any evidence for a spin gap. A strong $T$-dependence of the phonon DOS was found, with a marked broadening of the whole spectrum, providing evidence of strong anharmonicity. This anharmonicity is corroborated by large-amplitude motions of Bi and O ions observed with neutron diffraction. These results highlight the importance of spin-phonon coupling in this material.
Hybrid organolead perovskites (HOP) have started to establish themselves in the field of photovoltaics, mainly due to their great optoelectronic properties and steadily improving solar cell efficiency. Study of the lattice dynamics is key in understa nding the electron-phonon interactions at play, responsible for such properties. Here, we investigate, via neutron and Raman spectroscopies, the optical phonon spectrum of four different HOP single crystals: MAPbBr$_3$, FAPbBr$_3$, MAPbI$_3$, and $alpha$-FAPbI$_3$. Low temperature spectra reveal weakly dispersive optical phonons, at energies as low as 2-5~meV, which seem to be the origin of the limit of the charge carriers mobilities in these materials. The temperature dependence of our neutron spectra shows as well a significant anharmonic behaviour, resulting in optical phonon overdamping at temperatures as low as 80~K, questionning the validity of the quasi-particle picture for the low energy optical modes at room temperature where the solar cells operate.
We have investigated the anisotropic thermal expansion of graphite using ab-initio calculation of lattice dynamics and anharmonicity of the phonons, which reveal that the negative thermal expansion (NTE) in the a-b plane below 600 K and very large po sitive thermal expansion along the c-axis up to high temperatures arise due to various phonons polarized along the c-axis. While the NTE arises from the anharmonicity of transverse phonons over a broad energy range up to 60 meV, the large positive expansion along the c-axis occurs largely due to the longitudinal optic phonon modes around 16 meV and a large linear compressibility along the c-axis. The hugely anisotropic bonding in graphite is found to be responsible for wide difference in the energy range of the transverse and longitudinal phonon modes polarized along the c-axis, which are responsible for the anomalous thermal expansion behavior. This behaviour is in contrast to other nearly isotropic hexagonal structures like water-ice, which show anomalous thermal expansion in a small temperature range arising from a narrow energy range of phonons.
104 - Hugen Yan , Daohua Song , et al 2009
Time-resolved Raman spectroscopy has been applied to probe the anharmonic coupling and electron-phonon interaction of optical phonons in graphite. From the decay of the transient anti-Stokes scattering of the G-mode following ultrafast excitation, we measured a lifetime of 2.2+/-0.1ps for zone-center optical phonons. We also observed a transient stiffening of G-mode phonons, an effect attributed to the reduction of the electron-phonon coupling for high electronic temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا