ترغب بنشر مسار تعليمي؟ اضغط هنا

Structured and unstructured continuous models for Wolbachia infections

87   0   0.0 ( 0 )
 نشر من قبل Jozsef Farkas
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce and investigate a series of models for an infection of a diplodiploid host species by the bacterial endosymbiont textit{Wolbachia}. The continuous models are characterized by partial vertical transmission, cytoplasmic incompatibility and fitness costs associated with the infection. A particular aspect of interest is competitions between mutually incompatible strains. We further introduce an age-structured model that takes into account different fertility and mortality rates at different stages of the life cycle of the individuals. With only a few parameters, the ordinary differential equation models exhibit already interesting dynamics and can be used to predict criteria under which a strain of bacteria is able to invade a population. Interestingly, but not surprisingly, the age-structured model shows significant differences concerning the existence and stability of equilibrium solutions compared to the unstructured model.



قيم البحث

اقرأ أيضاً

Structured population models are a class of general evolution equations which are widely used in the study of biological systems. Many theoretical methods are available for establishing existence and stability of steady states of general evolution eq uations. However, except for very special cases, finding an analytical form of stationary solutions for evolution equations is a challenging task. In the present paper, we develop a numerical framework for computing approximations to stationary solutions of general evolution equations, which can also be used to produce existence and stability regions for steady states. In particular, we use the Trotter-Kato Theorem to approximate the infinitesimal generator of an evolution equation on a finite dimensional space, which in turn reduces the evolution equation into a system of ordinary differential equations. Consequently, we approximate and study the asymptotic behavior of stationary solutions. We illustrate the convergence of our numerical framework by applying it to a linear Sinko-Streifer structured population model for which the exact form of the steady state is known. To further illustrate the utility of our approach, we apply our framework to nonlinear population balance equation, which is an extension of well-known Smoluchowksi coagulation-fragmentation model to biological populations. We also demonstrate that our numerical framework can be used to gain insight about the theoretical stability of the stationary solutions of the evolution equations. Furthermore, the open source Python program that we have developed for our numerical simulations is freely available from our Github repository (github.com/MathBioCU).
In many applications it is important to understand the sensitivity of eigenvalues of a matrix polynomial to perturbations of the polynomial. The sensitivity commonly is described by condition numbers or pseudospectra. However, the computation of pseu dospectra of matrix polynomials is very demanding computationally. This paper describes a new approach to computing approximations of pseudospectra of matrix polynomials by using rank-one or projected rank-one perturbations. These perturbations are inspired by Wilkinsons analysis of eigenvalue sensitivity. This approach allows the approximation of both structured and unstructured pseudospectra. Computed examples show the method to perform much better than a method based on random rank-one perturbations both for the approximation of structured and unstructured (i.e., standard) polynomial pseudospectra.
54 - Qing Liu , Longbing Cao 2021
The novel coronavirus disease 2019 (COVID-19) presents unique and unknown problem complexities and modeling challenges, where an imperative task is to model both its process and data uncertainties, represented in implicit and high-proportional undocu mented infections, asymptomatic contagion, social reinforcement of infections, and various quality issues in the reported data. These uncertainties become even more phenomenal in the overwhelming mutation-dominated resurgences with vaccinated but still susceptible populations. Here we introduce a novel hybrid approach to (1) characterizing and distinguishing Undocumented (U) and Documented (D) infections commonly seen during COVID-19 incubation periods and asymptomatic infections by expanding the foundational compartmental epidemic Susceptible-Infected-Recovered (SIR) model with two compartments, resulting in a new Susceptible-Undocumented infected-Documented infected-Recovered (SUDR) model; (2) characterizing the probabilistic density of infections by empowering SUDR to capture exogenous processes like clustering contagion interactions, superspreading and social reinforcement; and (3) approximating the density likelihood of COVID-19 prevalence over time by incorporating Bayesian inference into SUDR. Different from existing COVID-19 models, SUDR characterizes the undocumented infections during unknown transmission processes. To capture the uncertainties of temporal transmission and social reinforcement during the COVID-19 contagion, the transmission rate is modeled by a time-varying density function of undocumented infectious cases. We solve the modeling by sampling from the mean-field posterior distribution with reasonable priors, making SUDR suitable to handle the randomness, noise and sparsity of COVID-19 observations widely seen in the public COVID-19 case data.
342 - Zhuang Jiao , Yisheng Zhong 2011
The issues of robust stability for two types of uncertain fractional-order systems of order $alpha in (0,1)$ are dealt with in this paper. For the polytope-type uncertainty case, a less conservative sufficient condition of robust stability is given; for the norm-bounded uncertainty case, a sufficient and necessary condition of robust stability is presented. Both of these conditions can be checked by solving sets of linear matrix inequalities. Two numerical examples are presented to confirm the proposed conditions.
Digital data is a gold mine for modern journalism. However, datasets which interest journalists are extremely heterogeneous, ranging from highly structured (relational databases), semi-structured (JSON, XML, HTML), graphs (e.g., RDF), and text. Journ alists (and other classes of users lacking advanced IT expertise, such as most non-governmental-organizations, or small public administrations) need to be able to make sense of such heterogeneous corpora, even if they lack the ability to define and deploy custom extract-transform-load workflows, especially for dynamically varying sets of data sources. We describe a complete approach for integrating dynamic sets of heterogeneous datasets along the lines described above: the challenges we faced to make such graphs useful, allow their integration to scale, and the solutions we proposed for these problems. Our approach is implemented within the ConnectionLens system; we validate it through a set of experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا