ﻻ يوجد ملخص باللغة العربية
We use the WMAP maximum entropy method foreground emission map combined with previously determined distances to giant HII regions to measure the free-free flux at Earth and the free-free luminosity of the galaxy. We find a total flux f_ u=54211 Jy and a flux from 88 sources of f_ u=36043 Jy. The bulk of the sources are at least marginally resolved, with mean radii ~60 pc, electron density n_e ~ 9 cm^{-3}, and filling factor phi_{HII}=0.005 (over the Galactic gas disk). The total dust-corrected ionizing photon luminosity is Q=3.2x10^{53} photons/s, in good agreement with previous estimates. We use GLIMPSE and MSX 8 micron images to show that the bulk of the free-free luminosity is associated with bubbles having radii r~5-100 pc, with a mean ~20 pc. These bubbles are leaky, so that ionizing photons from inside the bubble excite free-free emission beyond the bubble walls, producing WMAP sources that are larger than the 8 micron bubbles. We suggest that the WMAP sources are the counterparts of the extended low density HII regions described by Mezger (1978). Half the ionizing luminosity from the sources is emitted by the nine most luminous objects, while the seventeen most luminous emit half the total Galactic ionizing flux. These 17 sources have 4x10^{51} < Q <1.6x10^{52}, corresponding to 6x10^4M_odot < M_*< 2x10^5M_odot; half to two thirds of this will be in the central massive star cluster. We convert the measurement of Q to a Galactic star formation rate dM/dt=1.3M_odot/yr, but point out that this is highly dependent on the exponent Gamma~1.35 of the high mass end of the stellar initial mass function.
[Abridged] We present updated estimates of Galactic foreground emission using seven years of WMAP data. Using the power spectrum of differences between multi-frequency template-cleaned maps, we find no evidence for foreground contamination outside of
The quadrupole power of cosmic microwave background (CMB) temperature anisotropies seen in the WMAP data is puzzlingly low. In this paper we demonstrate that Minimum Variance Optimization (MVO), a technique used by many authors (including the WMAP sc
(Abridged) The 7-year WMAP data and improved astrophysical data rigorously test the standard cosmological model and its extensions. By combining WMAP with the latest distance measurements from BAO and H0 measurement, we determine the parameters of th
We present the final nine-year maps and basic results from the WMAP mission. We provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to
We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter LCDM model. Wh