ﻻ يوجد ملخص باللغة العربية
In previous work, we analyzed the linear and nonlinear stability of static, spherically symmetric wormhole solutions to Einsteins field equations coupled to a massless ghost scalar field. Our analysis revealed that all these solutions are unstable with respect to linear and nonlinear spherically symmetric perturbations and showed that the perturbation causes the wormholes to either decay to a Schwarzschild black hole or undergo a rapid expansion. Here, we consider charged generalization of the previous models by adding to the gravitational and ghost scalar field an electromagnetic one. We first derive the most general static, spherically symmetric wormholes in this theory and show that they give rise to a four-parameter family of solutions. This family can be naturally divided into subcritical, critical and supercritical solutions depending on the sign of the sum of the asymptotic masses. Then, we analyze the linear stability of these solutions. We prove that all subcritical and all critical solutions possess one exponentially in time growing mode. It follows that all subcritical and critical wormholes are linearly unstable. In the supercritical case we provide numerical evidence for the existence of a similar unstable mode.
We analyze the nonlinear evolution of spherically symmetric wormhole solutions coupled to a massless ghost scalar field using numerical methods. In a previous article we have shown that static wormholes with these properties are unstable with respect
We examine the linear stability of static, spherically symmetric wormhole solutions of Einsteins field equations coupled to a massless ghost scalar field. These solutions are parametrized by the areal radius of their throat and the product of the mas
It has been shown that the mass of the scalar field in the charged stringy black hole is never able to generate a potential well outside the event horizon to trap the superradiant modes. This is to say that the charged stringy black hole is stable ag
We explore the possibility that traversable wormholes be supported by specific equations of state responsible for the present accelerated expansion of the Universe, namely, phantom energy, the generalized Chaplygin gas, and the van der Waals quintessence equation of state.
In Phys.Rev.D89, 104053 (2014) we studied the absorption cross section of a scalar field of mass $m$ impinging on a static black hole of mass $M$ and charge $Q$. We presented numerical results using the partial-wave method, and analytical results in