ﻻ يوجد ملخص باللغة العربية
The MIMAC project is a multi-chamber detector for Dark Matter search, aiming at measuring both track and ionization with a matrix of micromegas micro-TPC filled with He3 and CF4. Recent experimental results on the first measurements of the Helium quenching factor at low energy (1 keV recoil) are presented, together with the first simulation of the track reconstruction. Recontruction of track of alpha from Radon impurities is shown as a first proof of concept.
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from background. However, this strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of track
The dark matter directional detection opens a new field in cosmology bringing the possibility to build a map of nuclear recoils that would be able to explore the galactic dark matter halo giving access to a particle characterization of such matter an
Directional detection of non-baryonic DarkMatter is a promising search strategy for discriminating WIMP events from background ones. This strategy requires both a measurement of the recoil energy down to a few keV and 3D reconstruction of tracks down
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating WIMP events from neutrons, the ultimate background for dark matter direct detection. This strategy requires both a precise measurement of the energy d