ترغب بنشر مسار تعليمي؟ اضغط هنا

Where is the best site on Earth? Domes A, B, C and F, and Ridges A and B

41   0   0.0 ( 0 )
 نشر من قبل Will Saunders
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Antarctic plateau contains the best sites on earth for many forms of astronomy, but none of the existing bases was selected with astronomy as the primary motivation. In this article, we try to systematically compare the merits of potential observatory sites.We include South Pole, Domes A, C, and F, and also Ridge B (running northeast from Dome A), and what we call Ridge A (running southwest from Dome A). Our analysis combines satellite data, published results, and atmospheric models, to compare the boundary layer, weather, aurorae, airglow, precipitable water vapor, thermal sky emission, surface temperature, and the free atmosphere, at each site. We find that all Antarctic sites are likely to be compromised for optical work by airglow and aurorae. Of the sites with existing bases, Dome A is easily the best overall; but we find that Ridge A offers an even better site. We also find that Dome F is a remarkably good site. Dome C is less good as a thermal infrared or terahertz site, but would be able to take advantage of a predicted OH hole over Antarctica during spring.

قيم البحث

اقرأ أيضاً

Let $A in mathbb{Z}^{m times n}$ be an integral matrix and $a$, $b$, $c in mathbb{Z}$ satisfy $a geq b geq c geq 0$. The question is to recognize whether $A$ is ${a,b,c}$-modular, i.e., whether the set of $n times n$ subdeterminants of $A$ in absolut e value is ${a,b,c}$. We will succeed in solving this problem in polynomial time unless $A$ possesses a duplicative relation, that is, $A$ has nonzero $n times n$ subdeterminants $k_1$ and $k_2$ satisfying $2 cdot |k_1| = |k_2|$. This is an extension of the well-known recognition algorithm for totally unimodular matrices. As a consequence of our analysis, we present a polynomial time algorithm to solve integer programs in standard form over ${a,b,c}$-modular constraint matrices for any constants $a$, $b$ and $c$.
We calculate the diffuse intensity of cosmic ray (CR) nuclei and their secondaries in the Boron-Carbon group produced by supernova remnants (SNR). The trajectories of charged particles in the SNR are modeled as a random walk in the test particle appr oximation. Secondary production by CRs colliding with gas in the SNR is included as a Monte Carlo process, while we use Galprop to account for the propagation and interactions of CRs in the Galaxy. In the vicinity of a source, we find an approximately constant B/C ratio as a function of energy. As a result, the B/C ratio at Earth does not rise with energy, but flattens instead in the high energy limit. This prediction can be soon tested by the AMS-2 collaboration.
154 - Jingwen Shen , Xiaoyan Yang 2020
Let $mathfrak{a},mathfrak{b}$ be two ideals of a commutative noetherian ring $R$ and $M$ a finitely generated $R$-module.~We continue to study $textrm{f}textrm{-}mathrm{grad}_R(mathfrak{a},mathfrak{b},M)$ which was introduced in [Bull. Malays. Math. Sci. Soc. 38 (2015) 467--482], some computations and bounds of $textrm{f}textrm{-}mathrm{grad}_R(mathfrak{a},mathfrak{b},M)$ are provided.~We also give the structure of $(mathfrak{a},mathfrak{b})$-$mathrm{f}$-modules,~various properties which are analogous to those of Cohen Macaulay modules are discovered.
The present-day envelope of gaseous planets is a relic of how these giant planets originated and evolved. Measuring their elemental composition therefore presents a powerful opportunity to answer long-standing questions regarding planet formation. Ob taining precise observational constraints on the elemental inventory of giant exoplanets has, however, remained challenging due to the limited simultaneous wavelength coverage of current space-based instruments. Here, we present thermal emission observations of the non-transiting hot Jupiter $tau$ Boo b using the new wide wavelength coverage (0.95$-$2.50$,mu$m) and high spectral resolution ($R=70,000$) SPIRou spectrograph. By combining a total of 20 hours of SPIRou data obtained over five nights in a full atmospheric retrieval framework designed for high-resolution data, we constrain the abundances of all the major oxygen- and carbon-bearing molecules and recover a non-inverted temperature structure using a new free-shape, nonparametric TP profile retrieval approach. We find a volume mixing ratio of log(CO)$,,=-2.46_{-0.29}^{+0.25}$ and a highly depleted water abundance of less than $0.0072$ times the value expected for a solar composition envelope. Combined with upper limits on the abundances of CH$_4$, CO$_2$, HCN, TiO, and C$_2$H$_2$, this results in a gas-phase C/H ratio of 5.85$_{-2.82}^{+4.44}times,$solar, consistent with the value of Jupiter, and an envelope C/O ratio robustly greater than 0.60, even when taking into account the oxygen that may be sequestered out of the gas-phase. Combined, the inferred super-solar C/H, O/H, and C/O ratios on $tau$ Boo b support a formation scenario beyond the water snowline in a disk enriched in CO due to pebble drift.
We indicated in our previous work that for QED the role of the scalar potential which appears at the loop level is much smaller than that of the vector potential and in fact negligible. But the situation is different for QCD, one reason is that the l oop effects are more significant because $alpha_s$ is much larger than $alpha$, and secondly the non-perturbative QCD effects may induce a sizable scalar potential. In this work, we phenomenologically study the contribution of the scalar potential to the spectra of charmonia, bottomonia and $bbar c(bar b c)$ family. Taking into account both vector and scalar potentials, by fitting the well measured charmonia and bottomonia spectra, we re-fix the relevant parameters and test them by calculating other states of not only the charmonia, bottomonia, but also further the $bbar c$ family. We also consider the Lamb shift of the spectra.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا