ترغب بنشر مسار تعليمي؟ اضغط هنا

Precision measurements of quantum defects in the $n$P$_{3/2}$ Rydberg States of ${}^{85}$Rb

95   0   0.0 ( 0 )
 نشر من قبل Martin Jones
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rydberg States are used in our One Atom Maser experiment because they offer a large dipole moment and couple strongly to low numbers of microwave photons in a high Q cavity. Here we report the absolute frequencies of the P$_{3/2}$ states for principal quantum numbers $n=36$ to $n=63$. These measurements were made with a three step laser excitation scheme. A wavemeter was calibrated against a frequency comb to provide accurate absolute frequency measurements over the entire range, reducing the measurement uncertainty to 1MHz. We compare the spectroscopic results with known frequency measurements as a test of measurement accuracy.

قيم البحث

اقرأ أيضاً

We demonstrate a hybrid method based on field ionization and state-selective de-excitation capable of measuring the lifetimes of high-lying Rydberg states. For nS Rydberg states of Rb atoms with principal quantum number $60leq nleq88$, we measure bot h the individual target state lifetimes and those of the ensemble of Rydberg states populated via black-body radiation-induced transitions. We find good overall agreement with numerical calculations of the expected lifetimes in both cases. However, for the target state lifetimes, we find a local deviation towards shorter lifetimes for states around $n=72$, which we interpret as a signature of a modified black-body spectrum in the finite volume in which our experiments take place.
A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium R ydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.
147 - S. B. Papp , C. E. Wieman 2006
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even tho ugh the $^{85}$Rb gas is non-degenerate we observe a large molecular conversion efficiency due to the presence of a quantum degenerate $^{87}$Rb gas; this represents a key feature of our system. We compare the molecule creation at two different Feshbach resonances with different magnetic-field widths. The two Feshbach resonances are located at $265.44pm0.15$ G and $372.4pm1.3$ G. We also directly measure the small binding energy of the molecules through resonant magnetic-field association.
131 - G. G. Kiss , Gy. Gyurky , A. Simon 2008
The cross sections of the astrophysically relevant 85$Rb(p,n)85Srg,m reaction have been measured between Ec.m. = 2.16 and 3.96 MeV. The cross sections have been derived by measuring the gamma radiation following the beta decay of the reaction product s. A comparison with the predictions of Hauser-Feshbach calculations using the NON-SMOKER code confirms a recently derived modification of the global optical proton potential.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا