ترغب بنشر مسار تعليمي؟ اضغط هنا

First-principles study of the effect of Fe impurities in MgO at geophysically relevant pressures

43   0   0.0 ( 0 )
 نشر من قبل Donat Adams
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The self-interaction corrected local spin density (SIC-LSD) formalism and the standard GGA treatment of the exchange-correlation energy have been applied to study the collapse of the magnetic moment of Fe impurities in MgO. The system Mg_{1-x}Fe_xO is believed to be the second most abundant mineral in the Earths lower mantle. We confirm the experimentally found increase of the critical pressure upon iron concentration. Our calculations using standard GGA for a fixed Fe concentration show that different arrangements of Fe atoms can remarkably shift the transition pressure of the high spin (HS) to low spin (LS) transition. This could explain the experimentally found broad transition regions. Our results indicate that the HS-LS transition in Mg$_{1-x}Fe_xO is first order. We find that SIC-LSD fails to predict the divalent Fe configuration as the lowest energy configuration and discuss possible reasons for it.

قيم البحث

اقرأ أيضاً

140 - F. Ibrahim , A. Hallal , B. Dieny 2016
A characteristic dependence of voltage control of perpendicular magnetic anisotropy (VCMA) on oxygen migration at Fe/MgO interfaces was revealed by performing systematic {it ab initio} study of the energetics of the oxygen path around the interface. We find that the surface anisotropy energy exhibits a Boltzmann sigmoidal behavior as a function of the migrated O-atoms concentration. The obtained variation of the VCMA efficiency factor $beta$ reveals a saturation limit beyond a critical concentration of migrated O, about $54%$, at which the anisotropy switches from perpendicular to in plane. Furthermore, depending on the range of variation of the applied voltage, two regimes associated with reversible or irreversible ions displacement are predicted to occur, yielding different VCMA response. According to our findings, one can distinguish from the order of magnitude of $beta$ the VCMA driving mechanism: an effect of several tens of fJ/(V.m) is likely associated to charge-mediated effect combined with slight reversible oxygen displacements whereas an effect of the order of thousands of fJ/(V.m) is more likely associated with irreversible oxygen ionic migration.
We report on the local electronic structure of Fe impurities in MgO thin films. Using soft x-ray absorption spectroscopy (XAS) we verified that the Fe impurities are all in the 2+ valence state. The fine details in the line shape of the Fe $L_{2,3}$ edges provide direct evidence for the presence of a dynamical Jahn-Teller distortion. We are able to determine the magnitude of the effective $D_{4h}$ crystal field energies. We also observed a strong temperature dependence in the spectra which we can attribute to the thermal population of low-lying excited states that are present due to the spin-orbit coupling in the Fe 3d. Using this Fe$^{2+}$ impurity system as an example, we show that an accurate measurement of the orbital moment in Fe$_3$O$_4$ will provide a direct estimate for the effective local low-symmetry crystal fields on the Fe$^{2+}$ sites, important for the theoretical modeling of the formation of orbital ordering.
90 - L. Petit , A. Svane , Z. Szotek 2005
The self-interaction-corrected local-spin-density approximation is used to describe the electronic structure of dioxides, REO$_2$, and sesquioxides, RE$_2$O$_3$, for the rare earths, RE=Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy and Ho. The valencies of the rare earth ions are determined from total energy minimization. We find Ce, Pr, Tb in their dioxides to have the tetravalent configuration, while for all the sesquioxides the trivalent groundstate configuration is found to be the most favourable. The calculated lattice constants for these valency configurations are in good agreement with experiment. Total energy considerations are exploited to show the link between oxidation and $f$-electron delocalization, and explain why, among the dioxides, only the CeO$_2$, PrO$_2$, and TbO$_2$ exist in nature. Tetravalent NdO$_2$ is predicted to exist as a metastable phase - unstable towards the formation of hexagonal Nd$_2$O$_3$.
108 - A. Hallal , H. X. Yang , B. Dieny 2013
Using first-principles calculations, we elucidate microscopic mechanisms of perpendicular magnetic anisotropy (PMA)in Fe/MgO magnetic tunnel junctions through evaluation of orbital and layer resolved contributions into the total anisotropy value. It is demonstrated that the origin of the large PMA values is far beyond simply considering the hybridization between Fe-3d$ and O-2p orbitals at the interface between the metal and the insulator. On-site projected analysis show that the anisotropy energy is not localized at the interface but it rather propagates into the bulk showing an attenuating oscillatory behavior which depends on orbital character of contributing states and interfacial conditions. Furthermore, it is found in most situations that states with $d_{yz(xz)}$ and $d_{z^2}$ character tend always to maintain the PMA while those with $d_{xy}$ and $d_{x^2-y^2}$ character tend to favor the in-plane anisotropy. It is also found that while MgO thickness has no influence on PMA, the calculated perpendicular magnetic anisotropy oscillates as a function of Fe thickness with a period of 2ML and reaches a maximum value of 3.6 mJ/m$^2$.
A recent experiment reported that robust superconductivity appears in NbTi alloys under ultrahigh pressures with an almost constant superconducting $T_c$ of ~19 K from 120 to 261.7 GPa [J. Guo et al., Adv. Mater. 31, 1807240 (2019)], which is very ra re among the known superconductors. We investigate the origin of this novel superconducting behavior in NbTi alloys based on density functional theory and density functional perturbation theory calculations. Our results indicate that the pressure tends to transform NbTi alloys from a random phase to a uniformly ordered crystal phase, and the exotic robust superconductivity of NbTi alloys can still be understood in the framework of BCS theory. The Nb element in NbTi alloys plays a dominant role in the superconductivity at low pressure, while the NbTi crystal with an alternative and uniform Nb and Ti atomic arrangement may be responsible for the stable superconductivity under high pressures. The robust superconducting transition temperature of NbTi under ultrahigh pressure can be explained by a synergistic effect of the enhanced phonon frequency, the modestly reduced total electron-phonon coupling, and the pressure-dependent screened Coulomb repulsion.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا