ﻻ يوجد ملخص باللغة العربية
We are interested in the genealogical structure of alleles for a Bienayme-Galton-Watson branching process with neutral mutations (infinite alleles model), in the situation where the initial population is large and the mutation rate small. We shall establish that for an appropriate regime, the process of the sizes of the allelic sub-families converges in distribution to a certain continuous state branching process (i.e. a Jirina process) in discrete time. It^os excursion theory and the Leevy-It^o decomposition of subordinators provide fundamental insights for the results.
In this paper, we prove convergence in distribution of Langevin processes in the overdamped asymptotics. The proof relies on the classical perturbed test function (or corrector) method, which is used both to show tightness in path space, and to ident
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super
We consider branching random walks in $d$-dimensional integer lattice with time-space i.i.d. offspring distributions. When $d ge 3$ and the fluctuation of the environment is well moderated by the random walk, we prove a central limit theorem for the
Let $(Z_n,ngeq 0)$ be a supercritical Galton-Watson process whose offspring distribution $mu$ has mean $lambda>1$ and is such that $int x(log(x))_+ dmu(x)<+infty$. According to the famous Kesten & Stigum theorem, $(Z_n/lambda^n)$ converges almost sur
We consider a (sub) critical Galton-Watson process with neutral mutations (infinite alleles model), and decompose the entire population into clusters of individuals carrying the same allele. We specify the law of this allelic partition in terms of th