ﻻ يوجد ملخص باللغة العربية
The formation and evolution process and magnetic configuration of solar prominences remain unclear. In order to study the formation process of prominences, we examine continuous observations of a prominence in NOAA AR 10953 with the Solar Optical Telescope on the emph{Hinode} satellite. As reported in our previous Letter, we find a signature suggesting that a helical flux rope emerges from below the photosphere under a pre-existing prominence. Here we investigate more detailed properties and photospheric indications of the emerging helical flux rope, and discuss their relationship to the formation of the prominence. Our main conclusions are: (1) A dark region with absence of strong vertical magnetic fields broadens and then narrows in Ca textsc{ii} H-line filtergrams. This phenomenon is consistent with the emergence of the helical flux rope as photospheric counterparts. The size of the flux rope is roughly 30,000 km long and 10,000 km wide. The width is larger than that of the prominence. (2) No shear motion or converging flows are detected, but we find diverging flows such as mesogranules along the polarity inversion line. The presence of mesogranules may be related to the emergence of the helical flux rope. (3) The emerging helical flux rope reconnects with magnetic fields of the pre-existing prominence to stabilize the prominence for the next several days. We thus conjecture that prominence coronal magnetic fields emerge in the form of helical flux ropes that contribute to the formation and maintenance of the prominence.
Continuous observations were obtained of active region 10953 with the Solar Optical Telescope (SOT) on board the emph{Hinode} satellite during 2007 April 28 to May 9. A prominence was located over the polarity inversion line (PIL) in the south-east o
We study an evolving bipolar active region that exhibits flux cancellation at the internal polarity inversion line, the formation of a soft X-ray sigmoid along the inversion line and a coronal mass ejection. The evolution of the photospheric magnetic
Ellerman bombs (EBs) and Ultraviolet (UV) bursts are common brightening phenomena which are usually generated in the low solar atmosphere of emerging flux regions. In this paper, we have investigated the emergence of an initial un-twisted magnetic fl
Solar prominences are subject to all kinds of perturbations during their lifetime, and frequently demonstrate oscillations. The study of prominence oscillations provides an alternative way to investigate their internal magnetic and thermal structures
Continuous observations were performed of a quiescent prominence with the Solar Optical Telescope (SOT) on board the /emph{Hinode} satellite on 2006 December 23--24. A peculiar slowly-rising column of $/sim10^{4}$ K plasma develops from the lower atm