ترغب بنشر مسار تعليمي؟ اضغط هنا

Parsec-scale dust distributions in Seyfert galaxies - Results of the MIDI AGN snapshot survey

128   0   0.0 ( 0 )
 نشر من قبل Konrad Tristram
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emission of warm dust dominates the mid-infrared spectra of active galactic nuclei (AGN). Only interferometric observations provide the necessary angular resolution to resolve the nuclear dust and to study its distribution and properties. The investigation of dust in AGN cores is hence one of the main science goals for the MID-infrared Interferometric instrument MIDI at the VLTI. As the first step, the feasibility of AGN observations was verified and the most promising sources for detailed studies were identified. This was carried out in a snapshot survey with MIDI using Guaranteed Time Observations. In the survey, observations were attempted for 13 of the brightest AGN in the mid-infrared which are visible from Paranal. The results of the three brightest, best studied sources have been published in separate papers. Here we present the interferometric observations for the remaining 10, fainter AGN. For 8 of these, interferometric measurements could be carried out. Size estimates or limits on the spatial extent of the AGN-heated dust were derived from the interferometric data of 7 AGN. These indicate that the dust distributions are compact, with sizes on the order of a few parsec. The derived sizes roughly scale with the square root of the luminosity in the mid-infrared, s ~ sqrt(L), with no clear distinction between type 1 and type 2 objects. This is in agreement with a model of nearly optically thick dust structures heated to T ~ 300 K. For three sources, the 10 micron feature due to silicates is tentatively detected either in emission or in absorption. Based on the results for all AGN studied with MIDI so far, we conclude that in the mid-infrared the differences between individual galactic nuclei are greater than the generic differences between type 1 and type 2 objects.



قيم البحث

اقرأ أيضاً

95 - Preeti Kharb 2018
Radio outflows of extents ranging from a few parsecs to a few kiloparsecs are present in Seyfert and LINER galaxies that make up the `radio-quiet AGN class. AGN jets and/or starburst superwinds have been suggested to produce these outflows. We presen t a brief review of radio outflows in Seyfert and LINER galaxies on different spatial scales. Very long baseline interferometry (VLBI) observations of several individual Seyferts and LINERs suggest a link between AGN jets on parsec-scales and their kiloparsec-scale radio structures (KSRs). The whole range of misalignment angles present between the parsec-scale and the kpc-scale outflows in Seyfert galaxies and LINERs, supports the prevalence of bent outflows in them. Episodic AGN activity is suggested by the presence of multiple misaligned KSRs in several Seyfert galaxies in total and polarized intensity images; this latter result provides further support for an AGN jet origin of the KSRs present in Seyfert and LINER galaxies.
We used the CLUMPY torus models and a Bayesian approach to fit the infrared spectral energy distributions (SEDs) and ground-based high-angular resolution mid-infrared spectroscopy of 13 nearby Seyfert galaxies. This allowed us to put tight constraint s on torus model parameters such as the viewing angle, the radial thickness of the torus Y, the angular size of the cloud distribution sigma_torus, and the average number of clouds along radial equatorial rays N_0. The viewing angle is not the only parameter controlling the classification of a galaxy into a type 1 or a type 2. In principle type 2s could be viewed at any viewing angle as long as there is one cloud along the line of sight. A more relevant quantity for clumpy media is the probability for an AGN photon to escape unabsorbed. In our sample, type 1s have relatively high escape probabilities, while in type 2s, as expected, tend to be low. Our fits also confirmed that the tori of Seyfert galaxies are compact with torus model radii in the range 1-6pc. The scaling of the models to the data also provided the AGN bolometric luminosities, which were found to be in good agreement with estimates from the literature. When we combined our sample of Seyfert galaxies with a sample of PG quasars from the literature to span a range of L_bol(AGN)~10^{43}-10^{47}erg/s, we found plausible evidence of the receding torus. That is, there is a tendency for the torus geometrical covering factor to be lower at high AGN luminosities than at low AGN luminosities. This is because at low AGN luminosities the tori appear to have wider angular sizes and more clouds along radial equatorial rays. We cannot, however rule out the possibility that this is due to contamination by extended dust structures not associated with the dusty torus at low AGN luminosities, since most of these in our sample are hosted in highly inclined galaxies. (Abridged)
Context.Coherence in the characteristics of neighboring sources in 2D and 3D space may suggest the existence of large-scale cosmic structures, which are useful for cosmological studies. Numerous works have been conducted to detect such features in gl obal scalesas well as in confined areas of the sky. However, results are often contradictory and their interpretation remains controversial. Aims.We investigate the potential alignment of parsec-scale radio jets in localized regions of the coordinates-redshift space. Methods.We use data from the Astrogeo VLBI FITS image database to deduce jet directions of radio sources. We perform the search for statistical alignments between nearby sources and explore the impact of instrumental biases. Results.We unveil four regions for which the alignment between jet directions deviates from randomness at a significance level of more than 5 sigma and is unlikely due to instrumental systematics. Intriguingly, their locations coincide with other known large-scale cosmic structures and/or regions of alignments. Conclusions.If the alignments found are the result of physical processes, the discovered regions may designate some of the largest structures known to date.
We present a deep study of the average hard X-ray spectra of Seyfert galaxies. We analyzed all public INTEGRAL IBIS/ISGRI data available on all the 165 Seyfert galaxies detected at z<0.2. Our final sample consists of 44 Seyfert 1s, 29 Seyfert 1.5s, 7 8 Seyfert 2s, and 14 Narrow Line Seyfert 1s. We derived the average hard X-ray spectrum of each subsample in the 17-250keV energy range. All classes of Seyfert galaxies show on average the same nuclear continuum, as foreseen by the zeroth order unified model, with a cut-off energy of Ec>200keV, and a photon index of Gamma ~1.8. Compton-thin Seyfert 2s show a reflection component stronger than Seyfert 1s and Seyfert 1.5s. Most of this reflection is due to mildly obscured (10^23 cm^-2 < NH < 10^24 cm^-2) Seyfert 2s, which have a significantly stronger reflection component (R=2.2^{+4.5}_{-1.1}) than Seyfert 1s (R<=0.4), Seyfert 1.5s (R<= 0.4) and lightly obscured (NH < 10^23 cm^-2) Seyfert 2s (R<=0.5). This cannot be explained easily by the unified model. The absorber/reflector in mildly obscured Seyfert 2s might cover a large fraction of the X-ray source, and have clumps of Compton-thick material. The large reflection found in the spectrum of mildly obscured Seyfert 2s reduces the amount of Compton-thick objects needed to explain the peak of the cosmic X-ray background. Our results are consistent with the fraction of Compton-thick sources being ~10%. The spectra of Seyfert 2s with and without polarized broad lines do not show significant differences, the only difference between the two samples being the higher hard X-ray and bolometric luminosity of Seyfert 2s with polarized broad lines. The average hard X-ray spectrum of Narrow line Seyfert 1s is steeper than those of Seyfert 1s and Seyfert 1.5s, probably due to a lower energy of the cutoff.
The AGN-heated dust distribution (the torus) is increasingly recognized not only as the absorber required in unifying models, but as a tracer for the reservoir that feeds the nuclear Super-Massive Black Hole. Yet, even its most basic structural prope rties (such as its extent, geometry and elongation) are unknown for all but a few archetypal objects. Since most AGNs are unresolved in the mid-infrared, we utilize the MID-infrared interferometric Instrument (MIDI) at the Very Large Telescope Interferometer (VLTI) that is sensitive to structures as small as a few milli-arcseconds (mas). We present here an extensive amount of new interferometric observations from the MIDI AGN Large Program (2009 - 2011) and add data from the archive to give a complete view of the existing MIDI observations of AGNs. Additionally, we have obtained high-quality mid-infrared spectra from VLT/VISIR. We present correlated and total flux spectra for 23 AGNs and derive flux and size estimates at 12 micron using simple axisymmetric geometrical models. Perhaps the most surprising result is the relatively high level of unresolved flux and its large scatter: The median point source fraction is 70 % for type 1 and 47 % for type 2 AGNs meaning that a large part of the flux is concentrated on scales smaller than about 5 mas (0.1 - 10 pc). Among sources observed with similar spatial resolution, it varies from 20 % - 100 %. For 18 of the sources, two nuclear components can be distinguished in the radial fits. While these models provide good fits to all but the brightest sources, significant elongations are detected in eight sources. The half-light radii of the fainter sources are smaller than expected from the size ~ L^0.5 scaling of the bright sources and show a large scatter, especially when compared to the relatively tight size--luminosity relation in the near-infrared.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا