ترغب بنشر مسار تعليمي؟ اضغط هنا

The Hubble sequence: just a vestige of merger events?

49   0   0.0 ( 0 )
 نشر من قبل Hector Flores
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F. Hammer




اسأل ChatGPT حول البحث

Abr: We investigate whether the Hubble sequence can be reproduced by the relics of merger events. We verify that, at zmed=0.65, the abundant population of anomalous starbursts is mainly linked to the local spirals. Their morphologies are dominated by young stars and are related to their ionised-gas kinematics. We show that both morphologies and kinematics can be reproduced by using gas modelling from Barnes (2002) study of major mergers. Using our modelling to estimate the gas-to-stars transformation during a merger, we identify the gas fraction in the progenitors to be generally above 50%. All distant and massive starbursts can be distributed along a temporal sequence from the first passage to the nuclei fusion and then to the disk rebuilding phase. It confirms that the rebuilding spiral disk scenario is possibly an important channel for the formation of present-day disks in spirals. Because half of the present-day spirals had peculiar morphologies and anomalous kinematics at zmed=0.65, they could indeed be in major mergers phases 6 Gyrs ago, and almost all at z~1. It is time now to study in detail the formation of spiral disks and of their substructures, including bulge, disks, arms, bars, rings that may mainly originate from instabilities created during the last major merger.

قيم البحث

اقرأ أيضاً

Future generation of gravitational wave detectors will have the sensitivity to detect gravitational wave events at redshifts far beyond any detectable electromagnetic sources. We show that if the observed event rate is greater than one event per year at redshifts z > 40, then the probability distribution of primordial density fluctuations must be significantly non-Gaussian or the events originate from primordial black holes. The nature of the excess events can be determined from the redshift distribution of the merger rate.
We present the results of a study of a statistically significant sample of galaxies which clearly demonstrate that supermassive black holes are generically present in all morphological types. Our analysis is based on the quantitative morphological cl assification of 1.12 million galaxies in the SDSS DR7 and on the detection of black hole activity via two different methods, the first one based on their X-ray/radio emission and the second one based on their mid-infrared colors. The results of the first analysis confirm the correlation between black hole and total stellar mass for 8 galaxies and includes one galaxy classified as bulgeless. The results of our second analysis, consisting of 15,991 galaxies, show that galaxies hosting a supermassive black hole follow the same morphological distribution as the general population of galaxies in the same redshift range. In particular, the fraction of bulgeless galaxies, 1,450 galaxies or 9 percent, is found to be the same as in the general population. We also present the correlation between black hole and total stellar mass for 6,247 of these galaxies. Importantly, whereas previous studies were limited to primarily bulge-dominated systems, our study confirms this relationship to all morphological types, in particular, to 530 bulgeless galaxies. Our results indicate that the true correlation that exists for supermassive black holes and their host galaxies is between the black hole mass and the total stellar mass of the galaxy and hence, we conclude that the previous assumption that the black hole mass is correlated with the bulge mass is only approximately correct.
We use ~8,600 >5e10 Msol COSMOS galaxies to study how the morphological mix of massive ellipticals, bulge-dominated disks, intermediate-bulge disks, bulge-less disks and irregular galaxies evolves from z=0.2 to z=1. The morphological evolution depend s strongly on mass. At M>3e11 Msol, no evolution is detected in the morphological mix: ellipticals dominate since z=1, and the Hubble sequence has quantitatively settled down by this epoch. At the 1e11 Msol mass scale, little evolution is detected, which can be entirely explained with major mergers. Most of the morphological evolution from z=1 to z=0.2 takes place at masses 5e10 - 1e11 Msol, where: (i) The fraction of spirals substantially drops and the contribution of early-types increases. This increase is mostly produced by the growth of bulge-dominated disks, which vary their contribution from ~10% at z=1 to >30% at z=0.2 (cf. the elliptical fraction grows from ~15% to ~20%). Thus, at these masses, transformations from late- to early-types result in disk-less elliptical morphologies with a statistical frequency of only 30% - 40%. Otherwise, the processes which are responsible for the transformations either retain or produce a non-negligible disk component. (ii) The bulge-less disk galaxies, which contribute ~15% to the intermediate-mass galaxy population at z=1, virtually disappear by z=0.2. The merger rate since z=1 is too low to account for the disappearance of these massive bulge-less disks, which most likely grow a bulge via secular evolution.
Galaxy mergers are considered as questionable mechanisms for the evolution of lenticular galaxies (S0s), on the basis that even minor ones induce structural changes that are difficult to reconcile with the strong bulge-disk coupling observed in the p hotometric scaling relations of S0s. We check if the evolution induced onto S0s by dry intermediate and minor mergers can reproduce their photometric scaling relations, analysing the bulge-disk decompositions of the merger simulations presented in Eliche-Moral et al. (2012). The mergers induce an evolution in the photometric planes compatible with the data of S0s, even in those ones indicating a strong bulge-disk coupling. The mergers drive the formation of the observed photometric relation in some cases, whereas they induce a slight dispersion compatible with data in others. Therefore, this evolutionary mechanism tends to preserve these scaling relations. In those photometric planes where the morphological types segregate, the mergers always induce evolution towards the region populated by S0s. The structural coupling of the bulge and the disk is preserved or reinforced because the mergers trigger internal secular processes in the primary disk that induce significant bulge growth, even although these models do not induce bars. Intermediate and minor mergers can thus be considered as plausible mechanisms for the evolution of S0s attending to their photometric scaling relations, as they can preserve and even strengthen any pre-existing structural bulge-disk coupling, triggering significant internal secular evolution (even in the absence of bars or dissipational effects). This means that it may be difficult to isolate the effects of pure internal secular evolution from those of the merger-driven one in present-day early-type disks (abridged).
78 - Mathilde Jauzac 2014
We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403 (z=0.397). Our investigation of cluster substructure rests primarily on a combined strong- and wea k-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the systems dynamics, we complement this lensing analysis with a study of the intra-cluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multi-scale grid model obtained from our combined lensing analysis extends the high-precision strong-lensing mass reconstruction recently performed to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well known mass concentrations in the cluster core. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excellent alignment is found for the NE cluster. Both the lensing analysis and the distribution of cluster light strongly suggest the presence of a third massive structure, almost 2 arcmin SW of the cluster centre. Since no X-ray emission is detected in this region, we conclude that this structure is non-virialised and speculate that it might be part of a large-scale filament almost aligned with our line of sight. Combining all evidence from the distribution of dark and luminous matter, we propose two alternative scenarios for the trajectories of the components of MACSJ0416.1-2403. Upcoming deep X-ray observations that allow the detection of shock fronts, cold cores, and sloshing gas (all key diagnostics for studies of cluster collisions) will allow us to test, and distinguish between these two scenarios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا