ترغب بنشر مسار تعليمي؟ اضغط هنا

High temperature superconductivity (Tc onset at 34K) in the high pressure orthorhombic phase of FeSe

130   0   0.0 ( 0 )
 نشر من قبل Gaston Leonel Garbarino
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have studied the structural and superconducting properties of tetragonal FeSe under pressures up to 26GPa using synchrotron radiation and diamond anvil cells. The bulk modulus of the tetragonal phase is 28.5(3)GPa, much smaller than the rest of Fe based superconductors. At 12GPa we observe a phase transition from the tetragonal to an orthorhombic symmetry. The high pressure orthorhombic phase has a higher Tc reaching 34K at 22GPa.


قيم البحث

اقرأ أيضاً

143 - J. P. Sun , G. Z. Ye , P. Shahi 2016
The importance of electron-hole interband interactions is widely acknowledged for iron-pnictide superconductors with high transition temperatures (Tc). However, high-Tc superconductivity without hole carriers has been suggested in FeSe single-layer f ilms and intercalated iron-selenides, raising a fundamental question whether iron pnictides and chalcogenides have different pairing mechanisms. Here, we study the properties of electronic structure in the high-Tc phase induced by pressure in bulk FeSe from magneto-transport measurements and first-principles calculations. With increasing pressure, the low-Tc superconducting phase transforms into high-Tc phase, where we find the normal-state Hall resistivity changes sign from negative to positive, demonstrating dominant hole carriers in striking contrast to other FeSe-derived high-Tc systems. Moreover, the Hall coefficient is remarkably enlarged and the magnetoresistance exhibits anomalous scaling behaviors, evidencing strongly enhanced interband spin fluctuations in the high-Tc phase. These results in FeSe highlight similarities with high-Tc phases of iron pnictides, constituting a step toward a unified understanding of iron-based superconductivity.
107 - B. Lei , J. H. Cui , Z. J. Xiang 2015
In contrast to bulk FeSe superconductor, heavily electron-doped FeSe-derived superconductors show relatively high Tc without hole Fermi surfaces and nodal superconducting gap structure, which pose great challenges on pairing theories in the iron-base d superconductors. In the heavily electron-doped FeSe-based superconductors, the dominant factors and the exact working mechanism that is responsible for the high Tc need to be clarified. In particular, a clean control of carrier concentration remains to be a challenge for revealing how superconductivity and Fermi surface topology evolves with carrier concentration in bulk FeSe. Here, we report the evolution of superconductivity in the FeSe thin flake with systematically regulated carrier concentrations by liquid-gating technique. High-temperature superconductivity at 48 K can be achieved only with electron doping tuned by gate voltage in FeSe thin flake with Tc less than 10 K. This is the first time to achieve such a high temperature superconductivity in FeSe without either epitaxial interface or external pressure. It definitely proves that the simple electron-doping process is able to induce high-temperature superconductivity with Tc as high as 48 K in bulk FeSe. Intriguingly, our data also indicates that the superconductivity is suddenly changed from low-Tc phase to high-Tc phase with a Lifshitz transition at certain carrier concentration. These results help us to build a unified picture to understand the high-temperature superconductivity among all FeSe-derived superconductors and shed light on further pursuit of higher Tc in these materials.
A huge enhancement of the superconducting transition temperature Tc was observed in tetragonal FeSe superconductor under high pressure. The onset temperature became as high as 27 K at 1.48 GPa and the pressure coefficient showed a huge value of 9.1 K /GPa. The upper critical field Hc2 was estimated to be ~ 72 T at 1.48 GPa. Because of the high Hc2, FeSe system may be a candidate for application as superconducting wire rods. Moreover, the investigation of superconductivity on simple structured FeSe may provide important clues to the mechanism of superconductivity in iron-based superconductors.
The cuprates and iron-based high-temperature superconductors share many common features: layered strongly anisotropic crystal structure, strong electronic correlations, interplay between different types of electronic ordering, the intrinsic spatial i nhomogeneity due to doping. The understanding of complex interplay between these factors is crucial for a directed search of new high-temperature superconductors. Here we show the appearance of inhomogeneous gossamer superconductivity in bulk FeSe compound at ambient pressure and at temperature 5 times higher than its zero-resistance $T_c$. This discovery helps to understand numerous remarkable superconducting properties of FeSe. We also find and prove a general property: if inhomogeneous superconductivity in a anisotropic conductor first appears in the form of isolated superconducting islands, it reduces electric resistivity anisotropically with maximal effect along the least conducting axis. This gives a simple and very general tool to detect inhomogeneous superconductivity in anisotropic compounds, which is critically important to study the onset of high-temperature superconductivity.
Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record su perconducting critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa of pressure[1], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we re-investigate the phase diagram and the superconducting properties of the H-S system by means of minima hopping method for structure prediction and Density Functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict SeH3 to exceed 120 K superconductivity at 100 GPa. We show that both SeH3 and SH3, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا