ترغب بنشر مسار تعليمي؟ اضغط هنا

Hole spin dephasing time associated to hyperfine interaction in quantum dots

124   0   0.0 ( 0 )
 نشر من قبل Maria Chamarro
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The spin interaction of a hole confined in a quantum dot with the surrounding nuclei is described in terms of an effective magnetic field. We show that, in contrast to the Fermi contact hyperfine interaction for conduction electrons, the dipole-dipole hyperfine interaction is anisotropic for a hole, for both pure or mixed hole states. We evaluate the coupling constants of the hole-nuclear interaction and demonstrate that they are only one order of magnitude smaller than the coupling constants of the electron-nuclear interaction. We also study, theoretically, the hole spin dephasing of an ensemble of quantum dots via the hyperfine interaction in the framework of frozen fluctuations of the nuclear field, in absence or in presence of an applied magnetic field. We also discuss experiments which could evidence the dipole-dipole hyperfine interaction and give information on hole mixing.



قيم البحث

اقرأ أيضاً

We study theoretically the emph{return probability experiment}, used to measure the dephasing time $T_2^*$, in a double quantum dot (DQD) in semiconducting carbon nanotubes (CNTs) with spin-orbit coupling and disorder induced valley mixing. Dephasing is due to hyperfine interaction with the spins of the ${}^{13}$C nuclei. Due to the valley and spin degrees of freedom four bounded states exist for any given longitudinal mode in the quantum dot. At zero magnetic field the spin-orbit coupling and the valley mixing split those four states into two Kramers doublets. The valley mixing term for a given dot is determined by the intra-dot disorder and therefore the states in the Kramers doublets belonging to different dots are different. We show how nonzero single-particle interdot tunneling amplitudes between states belonging to different doublets give rise to new avoided crossings, as a function of detuning, in the relevant two particle spectrum, crossing over from the two electrons in one dot states configuration, $(0,2)$, to the one electron in each dot configuration, $(1,1)$. In contrast to the clean system, multiple Landau-Zener processes affect the separation and the joining stages of each single-shot measurement and they affect the outcome of the measurement in a way that strongly depends on the initial state. We find that a well-defined return probability experiment is realized when, at each single-shot cycle, the (0,2) ground state is prepared. In this case, valley mixing increases the saturation value of the measured return probability, whereas the probability to return to the (0,2) ground state remains unchanged. Finally, we study the effect of the valley mixing in the high magnetic field limit; for a parallel magnetic field the predictions coincide with a clean nanotube, while the disorder effect is always relevant with a magnetic field perpendicular to the nanotube axis.
We consider theoretically ${}^{13}$C-hyperfine interaction induced dephasing in carbon nanotubes double quantum dots with curvature induced spin-orbit coupling. For two electrons initially occupying a single dot, we calculate the average return proba bility after separation into the two dots, which have random nuclear-spin configurations. We focus on the long time saturation value of the return probability, $P_infty$. Because of the valley degree of freedom, the analysis is more complex than in, for example, GaAs quantum dots, which have two distinct $P_infty$ values depending on the magnetic field. Here the prepared state and the measured state is non-unique because two electrons in the same dot are allowed in six different states. Moreover, for one electron in each dot sixteen states exist and therefore are available for being mixed by the hyperfine field. The return probability experiment is found to be strongly dependent on the prepared state, on the external magnetic field---both Zeeman and orbital effects - and on the spin-orbit splitting. The lowest saturation value, being $P_infty$=1/3, occurs at zero magnetic field for nanotubes with spin-orbit coupling and the initial state being the groundstate, this situation is equivalent to double dots without the valley degree of freedom. In total, we report nine dynamically different situations that give $P_infty$=1/3, 3/8, 2/5, 1/2 and for valley anti-symmetric prepared states in an axial magnetic field, $P_infty$=1. When the groundstate is prepared the ratio between the spin-orbit splitting and the Zeeman energy due to a perpendicular magnetic field can tune the effective hyperfine field continuously from being three dimensional to two dimensional giving saturation values from $P_infty$=1/3 to 3/8.
We have measured the carrier spin dynamics in p-doped InAs/GaAs quantum dots by pump-probe photo-induced circular dichroism and time-resolved photoluminescence experiments. We show that the hole spin dephasing is controlled by the hyperfine interacti on between hole and nuclear spins. In the absence of external magnetic field, we find a characteristic hole spin dephasing time of 15 ns, in close agreement with our calculations based on dipole-dipole coupling between the hole and the quantum dot nuclei. Finally we demonstrate that a small external magnetic field, typically 10 mT instead of 200 mT for the case of electrons, quenches the hyperfine hole spin dephasing.
We measure the spin dephasing of holes localized in self-assembled (InGa)As quantum dots by spin noise spectroscopy. The localized holes show a distinct hyperfine interaction with the nuclear spin bath despite the p-type symmetry of the valence band states. The experiments reveal a short spin relaxation time {tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time {tau}_{slow}^{hh} which exceeds the latter by more than one order of magnitude. The two times are attributed to heavy hole spins aligned perpendicular and parallel to the stochastic nuclear magnetic field. Intensity dependent measurements and numerical simulations reveal that the long relaxation time is still obscured by light absorption, despite low laser intensity and large detuning. Off-resonant light absorption causes a suppression of the spin noise signal due to the creation of a second hole entailing a vanishing hole spin polarization.
111 - Stefano Bosco , Daniel Loss 2021
Hole spin qubits are frontrunner platforms for scalable quantum computers, but state-of-the-art devices suffer from noise originating from the hyperfine interactions with nuclear defects. We show that these interactions have a highly tunable anisotro py that is controlled by device design and external electric fields. This tunability enables sweet spots where the hyperfine noise is suppressed by an order of magnitude and is comparable to isotopically purified materials. We identify surprisingly simple designs where the qubits are highly coherent and are largely unaffected by both charge and hyperfine noise. We find that the large spin-orbit interaction typical of elongated quantum dots not only speeds up qubit operations, but also dramatically renormalizes the hyperfine noise, altering qualitatively the dynamics of driven qubits and enhancing the fidelity of qubit gates. Our findings serve as guidelines to design high performance qubits for scaling up quantum computers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا