ترغب بنشر مسار تعليمي؟ اضغط هنا

The Disappearance of the Progenitors of Supernovae 1993J and 2003gd

153   0   0.0 ( 0 )
 نشر من قبل Justyn Maund
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using images from the Hubble Space Telescope (HST) and the Gemini Telescope we confirm the disappearance of the progenitors of two Type II supernovae (SNe), and evaluate the presence of other stars associated with them. We find that the progenitor of SN 2003gd, an M-supergiant star, is no longer observed at the SN location, and determine its intrinsic brightness using image subtraction techniques. The progenitor of SN 1993J, a K-supergiant star, is also no longer present, but its B-supergiant binary companion is still observed. The disappearance of the progenitors confirms that these two SNe were produced by Red Supergiants.


قيم البحث

اقرأ أيضاً

Theory holds that a star born with an initial mass between about 8 and 140 times the mass of the Sun will end its life through the catastrophic gravitational collapse of its iron core to a neutron star or black hole. This core collapse process is tho ught to usually be accompanied by the ejection of the stars envelope as a supernova. This established theory is now being tested observationally, with over three dozen core-collapse supernovae having had the properties of their progenitor stars directly measured through the examination of high-resolution images taken prior to the explosion. Here I review what has been learned from these studies and briefly examine the potential impact on stellar evolution theory, the existence of failed supernovae, and our understanding of the core-collapse explosion mechanism.
We review all the models proposed for the progenitor systems of Type Ia supernovae and discuss the strengths and weaknesses of each scenario when confronted with observations. We show that all scenarios encounter at least a few serious diffculties, i f taken to represent a comprehensive model for the progenitors of all Type Ia supernovae (SNe Ia). Consequently, we tentatively conclude that there is probably more than one channel leading SNe Ia. While the single-degenerate scenario (in which a single white dwarf accretes mass from a normal stellar companion) has been studied in some detail, the other scenarios will need a similar level of scrutiny before any firm conclusions can be drawn.
173 - Stephen J. Smartt 2009
Knowledge of the progenitors of core-collapse supernovae is a fundamental component in understanding the explosions. The recent progress in finding such stars is reviewed. The minimum initial mass that can produce a supernova has converged to 8 +/- 1 solar masses, from direct detections of red supergiant progenitors of II-P SNe and the most massive white dwarf progenitors, although this value is model dependent. It appears that most type Ibc supernovae arise from moderate mass interacting binaries. The highly energetic, broad-lined Ic supernovae are likely produced by massive, Wolf-Rayet progenitors. There is some evidence to suggest that the majority of massive stars above ~20 solar masses may collapse quietly to black-holes and that the explosions remain undetected. The recent discovery of a class of ultra-bright type II supernovae and the direct detection of some progenitor stars bearing luminous blue variable characteristics suggests some very massive stars do produce highly energetic explosions. The physical mechanism is open to debate and these SNe pose a challenge to stellar evolutionary theory.
We compute an extensive set of early-time spectra of supernovae interacting with circumstellar material using the radiative transfer code CMFGEN. Our models are applicable to events observed from 1 to a few days after explosion. Using these models, w e constrain the progenitor and explosion properties of a sample of 17 observed interacting supernovae at early-times. Because massive stars have strong mass loss, these spectra provide valuable information about supernova progenitors, such as mass-loss rates, wind velocities, and surface abundances. We show that these events span a wide range of explosion and progenitor properties, exhibiting supernova luminosities in the 1e8 to 1e12 Lsun range, temperatures from 10000 to 60000 K, progenitor mass-loss rates from a few 1e-4 up to 1 Msun/yr, wind velocities from 100 to 800 km/s, and surface abundances from solar-like to H-depleted. Our results suggest that many progenitors of supernovae interacting with circumstellar material have significantly increased mass-loss before explosion compared to what massive stars show during the rest of their lifetimes. We also infer a lack of correlation between surface abundances and mass-loss rates. This may point to the pre-explosion mass-loss mechanism being independent of stellar mass. We find that the majority of these events have CNO-processed surface abundances. In the single star scenario this points to a preference towards high-mass RSGs as progenitors of interacting SNe, while binary evolution could impact this conclusion. Our models are publicly available and readily applicable to analyze results from ongoing and future large scale surveys such as the Zwicky Transient Factory.
The double-degenerate (DD) model, involving the merging of massive double carbon-oxygen white dwarfs (CO WDs) driven by gravitational wave radiation, is one of the classical pathways for the formation of type Ia supernovae (SNe Ia). Recently, it has been proposed that the WD+He subgiant channel has a significant contribution to the production of massive double WDs, in which the primary WD accumulates mass by accreting He-rich matter from a He subgiant. We evolved about 1800 CO WD+He star systems and obtained a large and dense grid for producing SNe Ia through the DD model. We then performed a series of binary population synthesis simulations for the DD model, in which the WD+He subgiant channel is calculated by interpolations in this grid. According to our standard model, the Galactic birthrate of SNe Ia is about 2.4*10^{-3} yr^{-1} for the WD+He subgiant channel of the DD model; the total birthrate is about 3.7*10^{-3} yr^{-1} for all channels, reproducing that of observations. Previous theoretical models still have deficit with the observed SNe Ia with delay times <1 Gyr and >8 Gyr. After considering the WD+He subgiant channel, we found that the delay time distributions is comparable with the observed results. Additionally, some recent studies proposed that the violent WD mergers are more likely to produce SNe Ia based on the DD model. We estimated that the violent mergers through the DD model may only contribute to about 16% of all SNe Ia.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا