ﻻ يوجد ملخص باللغة العربية
We investigate the Bell inequalities derived from the graph states with violations detectable even with the presence of noises, which generalizes the idea of error-correcting Bell inequalities [Phys. Rev. Lett. 101, 080501 (2008)]. Firstly we construct a family of valid Bell inequalities tolerating arbitrary $t$-qubit errors involving $3(t+1)$ qubits, e.g., 6 qubits suffice to tolerate single qubit errors. Secondly we construct also a single-error-tolerating Bell inequality with a violation that increases exponentially with the number of qubits. Exhaustive computer search for optimal error-tolerating Bell inequalities based on graph states on no more than 10 qubits shows that our constructions are optimal for single- and double-error tolerance.
Bell inequalities constitute a key tool in quantum information theory: they not only allow one to reveal nonlocality in composite quantum systems, but, more importantly, they can be used to certify relevant properties thereof. We provide a very simpl
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. More entangled a generalized GHZ state is, more will be the violation. This establishes a relation between no
Non-trivial facet inequalities play important role in detecting and quantifying the nonolocality of a state -- specially a pure state. Such inequalities are expected to be tight. Number of such inequalities depends on the Bell test scenario. With the
Bell inequalities are important tools in contrasting classical and quantum behaviors. To date, most Bell inequalities are linear combinations of statistical correlations between remote parties. Nevertheless, finding the classical and quantum mechanic
We introduce Bell inequalities based on covariance, one of the most common measures of correlation. Explicit examples are discussed, and violations in quantum theory are demonstrated. A crucial feature of these covariance Bell inequalities is their n