ﻻ يوجد ملخص باللغة العربية
We combine IR, optical and X-ray data from the overlapping, 9.3 square degree NOAO Deep Wide-Field Survey (NDWFS), AGN and Galaxy Evolution Survey (AGES), and XBootes Survey to measure the X-ray evolution of 6146 normal galaxies as a function of absolute optical luminosity, redshift, and spectral type over the largely unexplored redshift range 0.1 < z < 0.5. Because only the closest or brightest of the galaxies are individually detected in X-rays, we use a stacking analysis to determine the mean properties of the sample. Our results suggest that X-ray emission from spectroscopically late-type galaxies is dominated by star formation, while that from early-type galaxies is dominated by a combination of hot gas and AGN emission. We find that the mean star formation and supermassive black hole accretion rate densities evolve like (1+z)^3, in agreement with the trends found for samples of bright, individually detectable starburst galaxies and AGN. Our work also corroborates the results of many previous stacking analyses of faint source populations, with improved statistics.
We study dwarf galaxy formation at high redshift ($zge5$) using a suite of high- resolution, cosmological hydrodynamic simulations and a semi-analytic model (SAM). We focus on gas accretion, cooling and star formation in this work by isolating the re
Using the self-consistent modeling of the conditional stellar mass functions across cosmic time by Yang et al. (2012), we make model predictions for the star formation histories (SFHs) of {it central} galaxies in halos of different masses. The model
We discuss the spectral energy distributions and physical properties of six galaxies whose photometric redshifts suggest they lie beyond a redshift $zsimeq$9. Each was selected on account of a prominent excess seen in the Spitzer/IRAC 4.5$mu$m band w
Distant galaxies show correlations between their current star-formation rates (SFRs) and stellar masses, implying that their star-formation histories (SFHs) are highly similar. Moreover, observations show that the UV luminosities and stellar masses g
A comparison is carried out among the star formation histories of early-type galaxies (ETG) in fossil groups, clusters and low density environments. Although they show similar evolutionary histories, a significant fraction of the fossils are younger