ﻻ يوجد ملخص باللغة العربية
Two quantum Macro-states and their Macroscopic Quantum Superpositions (MQS) localized in two far apart, space - like separated sites can be non-locally correlated by any entangled couple of single-particles having interacted in the past. This novel Macro - Macro paradigm is investigated on the basis of a recent study on an entangled Micro-Macro system involving N=10^5 particles. Crucial experimental issues as the violation of Bells inequalities by the Macro - Macro system are considered.
The high resilience to de-coherence shown by a recently discovered Macroscopic Quantum Superposition (MQS) involving a number of photons in excess of 5 x 10^4 motivates the present theoretical and numerical investigation. The results are placed in cl
The multiphoton quantum superposition generated by a quantum-injected optical parametric amplifier (QI-OPA) seeded by a single-photon belonging to an EPR entangled pair is made to interact with a Mirror-BEC shaped as a Bragg interference structure. T
We propose a novel protocol for the creation of macroscopic quantum superposition (MQS) states based on a measurement of a non-monotonous function of a quantum collective variable. The main advantage of this protocol is that it does not require switc
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpos
Quantum entanglement is the quintessence of quantum information processing mostly limited to the microscopic regime governed by Heisenberg uncertainty principle. For practical applications, however, macroscopic entanglement gives great benefits in bo