ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal processes in colliding-wind massive binaries: the contribution of Simbol-X to a multiwavelength investigation

126   0   0.0 ( 0 )
 نشر من قبل Michael De Becker
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Several colliding-wind massive binaries are known to be non-thermal emitters in the radio domain. This constitutes strong evidence for the fact that an efficient particle acceleration process is at work in these objects. The acceleration mechanism is most probably the Diffusive Shock Acceleration (DSA) process in the presence of strong hydrodynamic shocks due to the colliding-winds. In order to investigate the physics of this particle acceleration, we initiated a multiwavelength campaign covering a large part of the electromagnetic spectrum. In this context, the detailed study of the hard X-ray emission from these sources in the SIMBOL-X bandpass constitutes a crucial element in order to probe this still poorly known topic of astrophysics. It should be noted that colliding-wind massive binaries should be considered as very valuable targets for the investigation of particle acceleration in a similar way as supernova remnants, but in a different region of the parameter space.



قيم البحث

اقرأ أيضاً

An increasing number of early-type (O and Wolf-Rayet) colliding wind binaries (CWBs) is known to accelerate particles up to relativistic energies. In this context, non-thermal emission processes such as inverse Compton (IC) scattering are expected to produce a high energy spectrum, in addition to the strong thermal emission from the shock-heated plasma. SIMBOL-X will be the ideal observatory to investigate the hard X-ray spectrum (above 10 keV) of these systems, i.e. where it is no longer dominated by the thermal emission. Such observations are strongly needed to constrain the models aimed at understanding the physics of particle acceleration in CWB. Such systems are important laboratories for investigating the underlying physics of particle acceleration at high Mach number shocks, and probe a different region of parameter space than studies of supernova remnants.
Cosmic-ray acceleration has been a long-standing mystery and despite more than a century of study, we still do not have a complete census of acceleration mechanisms. The collision of strong stellar winds in massive binary systems creates powerful sho cks, which have been expected to produce high-energy cosmic-rays through Fermi acceleration at the shock interface. The accelerated particles should collide with stellar photons or ambient material, producing non-thermal emission observable in X-rays and gamma-rays. The supermassive binary star eta Carinae drives the strongest colliding wind shock in the solar neighborhood. Observations with non-focusing high-energy observatories indicate a high energy source near eta Carinae, but have been unable to conclusively identify eta Carinae as the source because of their relatively poor angular resolution. Here we present the first direct focussing observations of the non-thermal source in the extremely hard X-ray band, which is found to be spatially coincident with the star within several arc-seconds. These observations show that the source of non-thermal X-rays varies with the orbital phase of the binary, and that the photon index of the emission is similar to that derived through analysis of the gamma-ray spectrum. This is conclusive evidence that the high-energy emission indeed originates from non-thermal particles accelerated at colliding wind shocks.
266 - R. Blomme 2009
In colliding-wind binaries, shocks accelerate a fraction of the electrons up to relativistic speeds. These electrons then emit synchrotron radiation at radio wavelengths. Whether or not we detect this radiation depends on the size of the free-free ab sorption region in the stellar winds of both components. One expects long-period binaries to be detectable, but not the short-period ones. It was therefore surprising to find that Cyg OB2 No. 8A (P = 21.9 d) does show variability locked with orbital phase. To investigate this, we developed a model for the relativistic electron generation (including cooling and advection) and the radiative transfer of the synchrotron emission through the stellar wind. Using this model, we show that the synchrotron emitting region in Cyg OB2 No. 8A does extend far enough beyond the free-free absorption region to generate orbit-locked variability in the radio flux. This model can also be applied to other non-thermal emitters and will prove useful in interpreting observations from future surveys, such as COBRaS - the Cyg OB2 Radio Survey.
We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteri stics. Of the WR binaries with published parameters, all but two have kT > 0.9 keV. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O+O binaries, short-period systems generally have soft X-ray spectra and longer period systems show harder X-ray spectra, again with a large spread in LX/Lbol.
The binary stellar system HD 93129A is one of the most massive known binaries in our Galaxy. This system presents non-thermal emission in the radio band, which can be used to infer its physical conditions and predict its emission in the high-energy b and. We intend to constrain some of the unknown parameters of HD 93129A through modelling the non-thermal emitter, and also to analyse the detectability of this source in hard X-rays and $gamma$-rays. We develop a broadband radiative model for the wind-collision region taking into account the evolution of the accelerated particles streaming along the shocked region, the emission by different radiative processes, and the attenuation of the emission propagating through the local matter and radiation fields. From the analysis of the radio emission, we find that the binary HD~93129A is more likely to have a low inclination and a high eccentricity. The minimum energy of the non-thermal electrons seems to be between $sim 20 - 100$MeV, depending on the intensity of the magnetic field in the wind-collision region. The latter can be in the range $sim 20 - 1500$ mG. Our model is able to reproduce the observed radio emission, and predicts that the non-thermal radiation from HD~93129A will increase in the near future. With instruments such as textit{NuSTAR}, textit{Fermi}, and CTA, it will be possible to constrain the relativistic particle content of the source, and other parameters such as the magnetic field strength in the wind collision zone, which in turn can be used to obtain upper-limits of the magnetic field on the surface of the very massive stars, thereby inferring whether magnetic field amplification is taking place in the particle acceleration region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا